Numerical investigation and comparison for heat transfer coefficient for two eco-friendly Nano refrigerants in horizontal tube

  • Authors

    • Ammar H.Soheel Northern Technical University
    • Karam Hashim Mohammad Northern Technical University
    • Ahmed H.Ghanim Northern Technical University
    2018-11-05
    https://doi.org/10.14419/ijet.v7i4.19534
  • Heat Transfer Coefficient, Nanorefrigerant, Eco-Friendly Refrigerant, CFD, Nanoparticles, Nanofluid, Horizontal Tube, Thermo Physical, FLUENT ANSYS
  • This paper presents a numerical investigation and comparison for heat transfer coefficient for eco-friendly refrigerants R134a and R600a with Al2O3 and TiO2 nanoparticles at (1, 2, 3 and 4 %) concentration, flowing through a horizontal tube with a constant wall temperature at (310, 320 and 330 0K) using in vapor compression system. The numerical investigation is simulated by CFD model using FLUENT ANSYS 14.5 software. The numerical results indicate, when increasing the nanoparticles, the heat transfer coefficient of nanorefrigerants increases and the R134a+TiO2 nanorefrigerant was selected an optimal nanorefrigerant used in vapor compression system. Finally, the agreement seems to be acceptable between this study and other studies in literature with MPE 7.82 %.

     

  • References

    1. [1] K. T. Pawale, A. H. Dhumal, G. M. Kerkal, P. D. Y. Patil, and E. Management, “Performance Analysis of VCRS with Nano-Refrigerant,†vol. 0072, pp. 1031–1037, 2017.

      [2] S. Singh, K. Sharma, K. Lal, and N. M. Tripathi, “TO STUDY THE BEHAVIOUR OF NANOREFRIGERANT IN VAPOUR COMPRESSION CYCLE- A REVIEW,†pp. 648–652, 2015.

      [3] N. Subramani, A. Mohan, and J. P. M, “PERFORMANCE STUDIES ON A VAPOUR COMPRESSION REFRIGERATION SYSTEM USING NANO-LUBRICANT,†vol. 2, no. 1, pp. 522–530, 2013.

      [4] A. Majgaonkar, “Use of Nanoparticles In Refrigeration Systems : A Literature Review Paper,†2016.

      [5] I. M. Mahbubul, R. Saidur, and M. A. Amalina, “Heat transfer and pressure drop characteristics of Al 2 O 3 -R141b nanorefrigerant in horizontal smooth circular tube,†Procedia Eng., vol. 56, pp. 323–329, 2013. https://doi.org/10.1016/j.proeng.2013.03.126.

      [6] S. Bi, L. Shi, and L. Zhang, “Application of nanoparticles in domestic refrigerators,†vol. 28, pp. 1834–1843, 2008.

      [7] E. A. Abdel-hadi and S. H. Taher, “Heat Transfer Analysis of Vapor Compression System Using Nano,†vol. 15, pp. 80–84, 2011.

      [8] S. Bi, K. Guo, Z. Liu, and J. Wu, “Performance of a domestic refrigerator using TiO 2 -R600a nano-refrigerant as working fluid,†Energy Convers. Manag., vol. 52, no. 1, pp. 733–737, 2011. https://doi.org/10.1016/j.enconman.2010.07.052.

      [9] D. S. Kumar and R. Elansezhian, “Experimental Study on Al 2 O 3 -R134a Nano Refrigerant in Refrigeration System,†vol. 2, pp. 3927–3929, 2012.

      [10] F. S. Javadi and R. Saidur, “Energetic , economic and environmental impacts of using nanorefrigerant in domestic refrigerators in Malaysia,†Energy Convers. Manag., vol. 73, pp. 335–339, 2013. https://doi.org/10.1016/j.enconman.2013.05.013.

      [11] R. R. Kumar, K. Sridhar, and M. Narasimha, “Heat transfer enhancement in domestic refrigerator using.â€

      [12] I. M. Mahbubul, S. A. Fadhilah, R. Saidur, K. Y. Leong, and M. A. Amalina, “International Journal of Heat and Mass Transfer Thermophysical properties and heat transfer performance of Al 2 O 3 / R-134a nanorefrigerants,†HEAT MASS Transf., vol. 57, no. 1, pp. 100–108, 2013. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.007.

      [13] I. M. Mahbubul, R. Saidur, and M. A. Amalina, “In fl uence of particle concentration and temperature on thermal conductivity and viscosity of Al 2 O 3 / R141b nanorefrigerant ☆,†Int. Commun. Heat Mass Transf., vol. 43, pp. 100–104, 2013. https://doi.org/10.1016/j.icheatmasstransfer.2013.02.004.

      [14] S. A. Fadhilah, R. S. Marhamah, and A. H. M. Izzat, “Copper Oxide Nanoparticles for Advanced Refrigerant Thermophysical Properties : Mathematical Modeling,†vol. 2014, pp. 2–7, 2014.

      [15] T. Coumaressin and K. Palaniradja, “Performance Analysis of a Refrigeration System Using Nano Fluid,†vol. 4, no. 4, pp. 459–470, 2014.

      [16] K. Singh and K. Lal, “An Investigation into the Performance of a Nanorefrigerant ( R134a + Al 2 O 3 ) Based Refrigeration System,†vol. 5762, pp. 158–162, 2014.

      [17] C. V Papade and R. S. Wale, “PERFORMANCE IMPROVEMENT OF AIR CONDITIONING SYSTEM BY USING,†no. 10, 2015.

      [18] R. K. Jaiswal and R. S. Mishra, “Sustainable Science & Engineering . COP IMPROVEMENT OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING NANO PARTICLES MIXED,†no. July, 2015.

      [19] P. K. Kushwaha, P. Shrivastava, and A. K. Shrivastava, “EXPERIMENTAL STUDY OF NANOREFRIGERANT ( R134A + AL 2 O 3 ),†vol. c, no. 3, pp. 90–95, 2016.

      [20] T. Coumaressin, K. Palaniradja, and M. Sathishkumar, “Performance Analysis of Vapor Compression Refrigeration System Using Al 2 O 3 /TiO 2 /CuO – R1234yf Nano Fluid as Refrigerant,†vol. 2016, pp. 215–219, 2016.

      [21] D. C. Hernández, C. Nieto-londoño, and Z. Zapata-benabithe, “Analysis of working nanofluids for a refrigeration system Análisis de nanofluidos para un sistema de refrigeración,†vol. 83, no. 196, pp. 176–183, 2016.

      [22] Q. S. Mahdi, M. A. Theeb, and H. Saed, “Enhancement on the Performance of Refrigeration System Using the Nano-Refrigerant,†vol. 11, pp. 237–243, 2017.

      [23] A. Pradesh, A. Pradesh, A. Pradesh, A. Pradesh, and A. Info, “INVESTIGATION OF THERMOPHYSICAL PROPERTIES OF NANO MIXED REFRIGERATS TO BE USED IN DOMESTIC REFRIGERATION SYSTEM,†vol. 2, no. 4, pp. 108–121, 2016.

      [24] Prof. Latif M. Jiji E-Mail: jiji@ccny.cuny.edu, Heat Convection. City University of New York: Springer Berlin Heidelberg New York, 2005.

      [25] helping fluent anaysis 14.5, “ANSYS 14.5.†2016.

  • Downloads

  • How to Cite

    H.Soheel, A., Hashim Mohammad, K., & H.Ghanim, A. (2018). Numerical investigation and comparison for heat transfer coefficient for two eco-friendly Nano refrigerants in horizontal tube. International Journal of Engineering & Technology, 7(4), 4949-4953. https://doi.org/10.14419/ijet.v7i4.19534