Mathematical Modeling of Torsional and Longitudinal Oscillations in a Mine Winding Plant as a Multimass System

  • Authors

    • Leonid Kozar
    • Yevhenii Romanovych
    • Heorhii Afanasov
    • Viktor Pashchenko
    • Radionov Hennadi
    2018-09-15
    https://doi.org/10.14419/ijet.v7i4.3.19551
  • Dynamics, Mathematical model, Mine winding plant, Multimass system.
  • Abstract

    The purpose of the study is to determine the dynamic loads in the mechanical system of a mine winding plant. A 6-mass equivalent dynamic design model is constructed by reducing the number of discrete masses in the original 12-mass system by a special method. Spectra of natural oscillation frequencies of the initial and design systems are obtained. Differential equations that describe oscillations in the shaft line and ropes are drafted. Oscillation curves of the moments in the elastic coupling of the design system are obtained using numerical integration of the equations. The dynamic response factors are calculated. It was confirmed that the conversion of a 12-mass system into a 6-mass system almost does not affect the accuracy of determining the dynamic loads in the transmission line of the hoist in a given frequency range. The proposed methodology for constructing a mathematical model can be used not only for mine hoists, but also for other machines with multiple moving masses.

     

     

  • References

    1. [1] Ilin S.R., Ilina S.S. & Samusia V.I., Mehanika shahtnogo podyema [Mechanics of mine hoisting], Dnepropetrovsk: Natsionalnyiy gornyiy universitet, (2014), рр:26–65, available online: http://ir.nmu.org.ua/handle/123456789/21563, last visit:23.05.2018 [in Russian].

      [2] Samusia V.I., Ilin S.R., Kirichenko V.E. et al., Dinamika kanatnyih i gidrotransportnyih podemnyih kompleksov gornyih predpriyatiy [Dynamic rope and hydrotransport complexes of mining enterprises], Dnepropetrovsk, Natsionalnyiy gornyiy universitet, (2015), рр:113–227, available online: http://ir.nmu.org.ua/handle/ 123456789/146622, last visit:23.05.2018 [in Russian].

      [3] Zabolotnyiy K.S., Jupiev A.L. & Rutkovskiy M.A., Razrabotka teorii rascheta i konstruirovaniya tsilindricheskih barabanov shahtnyih podyemnyih mashin [The elaboration of calculating and designing theory of cylindrical hoist drums], Dnepropetrovsk, Natsionalnyiy gornyiy universitet, (2016), рр:129–149, available online: http://ir.nmu.org.ua/handle/123456789/147913?show=full, last visit:23.05.2018 [in Russian].

      [4] Osipova T.N., Dinamika barabannyih liftovyih podyemnikov kak mnogomassovy sistem [Dynamics drum elevator lifts as a multibody systems], Mashynobuduvannia, Zbirnyk naukovykh prats, Ukrainska inzhenerno-pedahohichna akademiia – Engineering, Collection of Scientific Papers, Ukrainian Engineering Pedagogics Academy, No.16, (2015), pp: 79–82, available online: http://problemymashinobuduvannya.uipa.edu.ua/ article/view/56163, last visit:23.05.2018 [in Russian].

      [5] Osipova T.N., Horoshilov O.N. & Pisartsov A.C., Dinamika podyemnoy ustanovki s uchetom uprugosti kanata [Dynamics of lifting installation with regard to the elasticity of the rope], Mashynobuduvannia, Zbirnyk naukovykh prats, Ukrainska inzhenerno-pedahohichna akademiia – Engineering, Collection of Scientific Papers, Ukrainian Engineering Pedagogics Academy, No.19, (2017), pp: 96–102, available online: http://problemymashinobuduvannya.uipa.edu.ua/ article/download/ 125807/120565, last visit:23.05.2018 [in Russian].

      [6] Ilin S.R., Samusia V.I., Ilina I.S. & Ilina S.S., Influence of dynamic processes in mine hoists on safety of exploitation of shafts with broken geometry. Naukovyi visnyk Natsionalnoho hirnychoho universytetu – Scientific Bulletin of the National Mining University, No.3, (2016), pp: 48–53, available online: http://www.nvngu.in.ua/index.php/en/component/jdownloads/summary/61-03/8521-03-2016-ilin, last visit:23.05.2018 [in English].

      [7] Kaczmarczyk S. & Ostachowicz, W. (2003). Transient vibration phenomena in deep mine hoisting cables. Part 2: Numerical simulation of the dynamic response. Journal of Sound and Vibration, 262(2), 245-289. [in English].

      [8] HUANG M, LI G, & ZHANG YZ (2002). Vibration test and fault diagnosis of mine hoisting gear [J]. Coal Mine Machinery, 12, 051. [in English].

      [9] Wolny S. & Matachowski F. (2010). Analysis of loads and stresses in structural elements of hoisting installations in mines.Engineering Transactions, 58(3-4), 153-174. [in English].

      [10] Wu Y., Tian Z. & Xue M. (2010, October). Study and simulation on variable frequency speed-regulating system of Mine Hoist based on PLC fuzzy control. In Image and Signal Processing (CISP), 2010 3rd International Congress on (Vol. 8, pp. 3703-3707). IEEE. [in English].

      [11] Orlikov M., Dinamika stankov [Machine-tool dynamics], Kiev: Vyshcha shkola, (1989), pp: 6–26. [in Russian].

  • Downloads

  • How to Cite

    Kozar, L., Romanovych, Y., Afanasov, H., Pashchenko, V., & Hennadi, R. (2018). Mathematical Modeling of Torsional and Longitudinal Oscillations in a Mine Winding Plant as a Multimass System. International Journal of Engineering & Technology, 7(4.3), 53-57. https://doi.org/10.14419/ijet.v7i4.3.19551

    Received date: 2018-09-12

    Accepted date: 2018-09-12

    Published date: 2018-09-15