Heat Transfer in the Ducts of the Cooling Systems of Traction Motors

  • Authors

    • A А. Aleksahin
    • A V Panchu
    • L A. Parkhomenko
    • H V. Bilovol
    2018-09-15
    https://doi.org/10.14419/ijet.v7i4.3.19824
  • cooling system, cooling air rate, fan power, traction motor, thermal convection, tape swirl generators.
  • Abstract

    Requirements for increasing thermal efficiency heat exchangers, which lead to energy saving, material and reduction cost, and as a result of reducing the impact on the environment, led to the development and use of various methods of increasing heat transfer. These methods are called intensification of heat transfer processes. Intensification of heat and mass transfer processes is of great importance for making progress in improving the existing and creation of new energy and heat-exchange equipment. Among the ways of intensifying heat transfer, the swirling of flows of working media is one of the simplest and most common methods and is widely used in energy-intensive channels of nuclear power plants, heat exchangers, aeronautical and rocket and space equipment, chemical industry and other technical devices. We have proposed formulas to determine the cooling air velocity necessary to ensure the required temperature condition of the traction motor assemblies. Decrease in the power of fans in the cooling system using the artificial heat transfer intensification in the ducts was estimated based on the generalization of the results of calculations.

     

     

  • References

    1. [1] Besprozvannykh A.V. Matematicheskiye modeli i metody elektroizolyatsionnykh konstruktsiy: uchebnoye posobiye, «Khar'kovskiy politekhnicheskiy institut», Natsional'nyy tekhnicheskiy universitet, 2012. – 108 s.

      [2] Pavlovskiy V.G. Osoblyvosti hidrodinamiki y teploobminu v nekruhlykh kanalakh: monohrafiya, «Khar'kovskiy politekhnicheskiy institut», Natsional'nyy tekhnicheskiy universitet, 2006. – 104 s.

      [3] Dreytser G.A., E.K. Kalinin. “Issledovaniye intensifikatsii teploobmena v prodol'no omyvayemom vozdukhom tesno puchke trubâ€, Inzhenerno-fizicheskiy zhurnal, 1968, t.15, â„–3, – S. 408–415.

      [4] Klachak A. “Heat transfer in the tubes with wire and tape turbulatorsâ€, Proceedings of the American society of mechanical engineers, heat transfer, Vol.95, No. 4, (1973), рр. 557-559, https://doi:10.1115/1.3450114

      [5] Smith Eiamsa ard and Pongjet Promvonge, “Enhancement of heat transfer in a tube with regularly spaced helical tape swirl generatorsâ€, Solar Energy, Vol.78, No.4, (2005), рр. 483-494, https://doi.org/10.1016/j.solener.2004.09.021

      [6] Smith Eiamsa ard and Pongjet Promvonge, “Heat transfer characteristics in a tube fitted with helical screw tape with/without core rod insertsâ€, International communications in heat and mass transfer, Vol.34, No.2, (2007), pp. 176-185. https://doi.org/10.1016/j.icheatmasstransfer.2006.10.006

      [7] Kuntysh V.B., Iokhvedov F.M. “Vybor effektivnoy poverkhnosti nagreva dlya sozdaniya kompaktnogo vozdukhonagrevatelya (kalorifera) â€, Izvestiye VUZov. Energetika, 1970, â„–5. – S. 68–72.

      [8] Shabanian S R, Rahimi M, Shahhosseini M and Alsairafi A A, “CFD and experimental studies on heat transfer enhancement in an air cooler equipped with different tube insertsâ€, International communications in heat and mass transfer, Vol.38, No.3, (2011), pp. 383-390, https://doi.org/10.1016/j.icheatmasstransfer.2010.12.015

      [9] Galushak I.V. Pidvyshchennya efektivnosti konvektyvnykh poverkhonʹ nahrivu kotelʹnykh ahrehativ v systemakh teplohazopostachannya: avtoreferat dysertatsiyi kandydata tekhnichnykh nauk, Kharkiv, 2016. – 20 s.

      [10] Kalinin E.K., Dreytser G.A., Yarkho S.Ð. “Intensifikatsiya teploobmena v kanalakhâ€, Moskva, Mashinostroyeniye, 1972. - 220 s.

      [11] Migay V.K. “Intensifikatsiya teploobmena v trubakh so spiral'nymy zakruchivatelyamy, Teploenergetika, 1968, №11, – S. 31-33.

      [12] N. Sahiti, F. Durst, A. Dewan. “Heat transfer enhancement by pin elementsâ€, International journal of heat and mass transfer, No.48, (2005), pp. 4738–4747. https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.001

      [13] Aleksahin A.A., Dreytser L.S., Bondarenko V.S., Torchinskaya I.T. “Povysheniye intensivnosti teploobmena v aksial'nykh ventilyatsionnykh kanalakh shikhtovannykh serdechnikov tyagovykh elektricheskikh mashin s pomoshch'yu lentochnykh zavikhriteleyâ€, Vestnik Khar'kovskogo Politekhnicheskogo Instituta, elektromashinostroyeniya i avtomatizatsiya promyshlennykh predpriyatiy, 1988, â„–255, Vypusk 13, – s 35-43.

      [14] Teplotekhnicheskikh Spravochnik v 2 t. / Pod obshch. red. V. N. Yureneva i P. D. Lebedeva. - vtoraya izdaniye, pererabotannoye, Moskva, Energiya, 1976, T.2. - 896 s.

      [15] Spravochnik po gidravlike / Pod obshch. red. V.A. Bol'shakova, Kiyev, Vysshaya shkola, 1984. - 343 s.

      [16] Smithberg E., Landis F. “Friction and forced convection heat-transfer characteristics in tubes with twisted tape swirl generatorsâ€, Proceedings of the American society of mechanical engineers, Heat transfer, Vol.86, No.1, (1964), pp. 52-55.

      [17] E.K. Akpinar, Y. Bicer. “Investigation of heat transfer and exergy loss in a concentric double pipe exchanger equipped with swirl generatorsâ€, International Journal of Thermal Science, Vol.44, No.6, (2005), pp. 598–607. https://doi.org/10.1016/j.ijthermalsci.2004.11.001

  • Downloads

  • How to Cite

    А. Aleksahin, A., V Panchu, A., A. Parkhomenko, L., & V. Bilovol, H. (2018). Heat Transfer in the Ducts of the Cooling Systems of Traction Motors. International Journal of Engineering & Technology, 7(4.3), 315-319. https://doi.org/10.14419/ijet.v7i4.3.19824

    Received date: 2018-09-18

    Accepted date: 2018-09-18

    Published date: 2018-09-15