Large Format Ceramic Panels Versus Recycled Aluminum Casting Panels: Improvement of the Thermal Behavior of the Museum of Fine Arts of Castellón

  • Authors

    • Víctor Echarri Iribarren
    • Ginés Gómez Castelló
    • Carlos Rizo Maestre
    2018-09-22
    https://doi.org/10.14419/ijet.v7i4.5.20048
  • large format ceramic, annual energy demand, recycled aluminum, energy efficiency, ventilated façade
  • There is a growing awareness towards the use in architecture of construction materials produced in the area in which the buildings are to be implemented. The reduction of environmental impacts derived from the lower consumption of energy in transportation is significant. In addition, the materials used in the façades have special relevance in the value of the annual energy demand. This fact becomes more important in the case of emblematic buildings with social media impact, both for the quality of their design and for the functional contributions they can make. Sometimes, even for purely aesthetic reasons, the paradox of opting for constructive solutions with worse performance, worse aging, a higher cost of maintenance operations or a higher value of annual energy demand is established. In this research the Museum of Fine Arts of Castellón is analyzed, made with cast aluminum recycled panels as a finishing material on the façade. A comparison is made with the alternative scenario, ventilated ceramic façade, of having used large format ceramic panels, produced in the region, where the ceramic sector is a very important cluster. The reduction of the value of the annual energy demand by 12% is evaluated by the improvements established in the ventilated ceramic façade.

     

     

  • References

    1. [1] J. A. Márquez, M. M. Bohórquez, and S. G. Melgar, “A New Metre for Cheap, Quick, Reliable and Simple Thermal Transmittance (U-Value) Measurements in Buildings,†Sensors, vol. 17, no. 9, p. 2017, Sep. 2017.

      [2] P. Hernandez and P. Kenny, “From net energy to zero energy buildings: Defining life cycle zero energy buildings (LC-ZEB),†Energy Build., vol. 42, no. 6, pp. 815–821, Jun. 2010.

      [3] S. Firląg and B. Zawada, “Impacts of airflows, internal heat and moisture gains on accuracy of modeling energy consumption and indoor parameters in passive building,†Energy Build., vol. 64, pp. 372–383, Sep. 2013.

      [4] A. Monge-Barrio and A. Sánchez-Ostiz, “Energy efficiency and thermal behaviour of attached sunspaces, in the residential architecture in Spain. Summer Conditions,†Energy Build., vol. 108, pp. 244–256, Dec. 2015.

      [5] O. P. Fanger, Thermal comfort. Analysis and applications in environmental engineering. Copenhagen, Denmark: McGraw-Hill, 1970.

      [6] S. Domínguez, J. J. Sendra, A. L. León, and P. M. Esquivias, “Towards Energy Demand Reduction in Social Housing Buildings: Envelope System Optimization Strategies,†Energies, vol. 5, no. 12, pp. 2263–2287, Jul. 2012.

      [7] V. Echarri, M. Salvador, A. Espinosa, and G. M. Ramírez, “Lesiones en Paneles Fenólicos de Madera Baquelizada: Diagnóstico e Intervención,†in Patorreb 2012: 4o Congreso de patología y rehabilitación de edificios : 12-14 de abril de 2012, Santiago de Compostela, 2012, ISBN 978-84-96712-49-2, pág. 45, 2012, p. 45.

      [8] E. Bernat-Maso, L. Gil, P. Roca, V. Sarrablo, and C. Escrig, “Structural characterisation of textile ceramic technology used as a curtain wall,†Eng. Struct., vol. 57, pp. 277–288, Dec. 2013.

      [9] Mansilla and Tuñon, Museo Bellas Artes Castellón, TC Cuadern. 2002.

      [10] V. Echarri, A. Galiano, M. I. Pérez-Millán, and A. B. González-Avilés, “Conditioning systems by radiant surfaces: comparative analysis of thermal ceramic panels versus the conventional systems in a museum,†WIT Trans. Eng. Sci., vol. 83, pp. 287–301, 2014.

      [11] ASCER and WEBER, Guía de la baldosa cerámica, 6a Edición. 2011.

      [12] G. Silva, M. A. Bengochea, L. Guaita, C. Segarra, J. Corrales, and J. Corrales, “Eficiencia energética de fachadas ventiladas con baldosas cerámicas reflectantes al infrarrojo cercano,†Inf. la Construcción, vol. 68, no. 544, p. 160, Dec. 2016.

      [13] A.-H. Deconinck and S. Roels, “Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements,†Energy Build., vol. 130, pp. 309–320, Oct. 2016.

      [14] CTE, Documento Básico HE 1. Ahorro de energía. Limitación de demanda energética. 2013.

      [15] EPBD, “Directiva 2010/31/UE del Parlamento Europeo y del Consejo, de 9 de mayo de 2010, relativa a la eficiencia energética de los edificios.†2010.

      [16] Código Técnico de la Edificación (CTE)., Reglamento de Instalaciones Térmicas en los Edificios, (RITE). ITC. 02.2.1. .

      [17] F. Salamone, L. Belussi, L. Danza, T. Galanos, M. Ghellere, and I. Meroni, “Design and Development of a Nearable Wireless System to Control Indoor Air Quality and Indoor Lighting Quality,†Sensors, vol. 17, no. 5, p. 1021, May 2017.

      [18] IDAE, “Consumos del Sector Residencial en España Resumen de Información Básica 2010-2011.†.

      [19] V. Echarri Iribarren, A. L. Galiano Garrigós, and Ã. B. González Avilés, “Ceramics and healthy heating and cooling systems: thermal ceramic panels in buildings. Conditions of comfort and energy demand versus convective systems,†Inf. la Construcción, vol. 68(544): e, pp. 1–14, Dec. 2016.

      [20] V. Echarri and Víctor, “Thermal Ceramic Panels and Passive Systems in Mediterranean Housing: Energy Savings and Environmental Impacts,†Sustainability, vol. 9, no. 9, p. 1613, Sep. 2017.

  • Downloads

  • How to Cite

    Echarri Iribarren, V., Gómez Castelló, G., & Rizo Maestre, C. (2018). Large Format Ceramic Panels Versus Recycled Aluminum Casting Panels: Improvement of the Thermal Behavior of the Museum of Fine Arts of Castellón. International Journal of Engineering & Technology, 7(4.5), 213-216. https://doi.org/10.14419/ijet.v7i4.5.20048