Identification, development and testing of thermal error compensation model for a headstock assembly of CNC turning centre

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    In CNC machine tools, transient temperature variation in the headstock assembly is the major contributors for spindle thermal error. The compensation of thermal error is critical for ensuring the accuracy of machine tool. The performance of an error compensation system depends largely on the accuracy and robustness of the thermal error model. In the present work, a robust thermal error model is developed for minimizing the error in lateral direction of the spindle which significantly influences the geometrical accuracy of the workpiece. Analysis-of-variance (ANOVA) is applied to the results of the experiments in determining the percentage contribution of each individual temperature key point against a stated level of confidence. Based on the analysis of existing approaches for thermal error modeling of machine tools, an approach of LASSO (least absolute shrinkage and selection operator) is proposed in order to avoid the multi collinearity problem. The proposed method is an innovative variable selection method to remove redundant or unimportant temperature key points in the linear thermal error model and minimize the residual sum of squares. The predictive error model is found to have better robustness and accuracy in comparison to the combination of grey correlation and step wise linear regression for error compensation of CNC lathe.

    Keywords: Analysis Of Variance (ANOVA), CNC Machine Tool, Grey Correlation Analysis (GCA), Headstock Assembly, LASSO Regression, Mean Absolute Deviation (MAD), Mean Square Error (MSE), Robustness, Standard Deviation (SD), Thermal Error.


  • References


    1. Jie Zhu, Robust thermal error modeling and compensation for CNC machine tools, 2008.
    2. Pawe?TUREK1Jerzy J?DRZEJEWSKI1 Wojciech MODRZYCKI1,Methods of Machine Tool Error Compensation, Vol. 10, No. 4, 2010
    3. J.G. Yang Y.Q. Ren G.L. Liu H.T. Zhao X.L. Dou W.Z. Chen S.W. He, Testing, Variable selecting and Modeling of thermal errors on an INDEX-G200 Turning Centre, DOI 10.1007/s00170-003-1908-3, 2005
    4. P.-C. Tseng and J.-L. Ho, A study of high-precision CNC lathe thermal errors and compensation, Int J Adv Manuf Technol (2002) 19:850-858.
    5. Yi Zhang & Jianguo Yang & Hui Jiang, Machine tool thermal error modeling and prediction by grey neural network, DOI 10.1007/s00170-011-3564-3, 2012.
    6. C.N.Guiar, Using Ridge Regression in Systematic Pointing Error Corrections, 1987.
    7. Josef Mayr, Jerzy Jedrzejewski, Thermal Issues in Machine Tools, 2012.
    8. Martin MARES1,Otakar HOREJS ,Jan HORNYCH, Jan SMOLIK, Robustness and portability of machine tool thermal error compensation model based on control of participating thermal sources Vol. 13, No. 1, 2013.
    9. Y. X. Li & J. G. Yang & T. Gelvis & Y. Y. Li, Optimization of measuring points for machine tool thermal error based on grey system theory, DOI 10.1007/s00170-006-0751-8,2008.
    10. J. Y. Yan & J. G. Yang Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation, DOI 10.1007/s00170-008-1791-z, 2009.
    11. Jianguo Yang, Jingxia Yuan*, Jun Ni Thermal error mode analysis and robust modeling for error compensation on a CNC turning center, 1999.
    12. J. Mou and C. R. Liu An Adaptive Methodology for Machine Tool Error Correction, J. Eng. Ind. 117(3), 389-399 (Aug 01, 1995) DOI:10.1115/1.2804345.
    13. En-Ming Miao & Ya-Yun Gong & Peng-Cheng Niu & Chang-Zhu Ji & Hai-Dong Chen Robustness of thermal error compensation modeling models of CNC machine tools, DOI 10.1007/s00170-013-5229-x, 2013.
    14. Tibshirani, R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, Vol 58, No. 1, pp. 267288, 1996.

 

View

Download

Article ID: 2012
 
DOI: 10.14419/ijet.v3i2.2012




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.