Numerical Method for Modeling the Turbofan Engine Tonal Fan BPF Noise Generation and Propagation Accounting the SAS Complex Acoustic Impedance

  • Authors

    • Sergey F. Timushev
    • Vladimir N. Gavrilyuk
    • Andrey A. Aksenov
    • Sergey A. Kharchenko
    2018-09-22
    https://doi.org/10.14419/ijet.v7i4.5.20195
  • acoustic-vortex method, blade passing frequency, complex acoustic impedance, pressure pulsations, SAS, tonal noise.
  • Noise reduction issues in the developed world receive an increasing attention, which is reflected in a great tightening of the noise level requirements. For the practical solution of this problem authors propose a new high-performance numerical modeling method of three-dimensional tonal noise acoustic field generated by the fan as a bladed machine. The method is based on solving a boundary value problem for Fourier transformed convective wave equation with complex variables in a Cartesian coordinate system in the arbitrary domain with impedance boundary conditions by finite volume method. The noise source is set in the form of sound power on the surface near the rotor that bounds the area of the vortex perturbations (pseudosound). Sound power is determined by acoustic-vortex method. There are shown examples of the method validation and application.

     

     

  • References

    1. [1] ISO 3740-1980 Acoustics – Determination of sound power levels of noise sources – Guidelines for the use of basic standards and for the preparation of noise test codes.

      [2] ISO 11690-1 (1996), ‘Acoustics – Recommended practice for the design of low-noise workplaces containing machinery – Part 1: Noise-control strate-gies’.

      [3] Jean Thimany Attacking Noise Early. Mechanical Engineering, No.8 (136), 2014, 44-49.

      [4] Yan Jiang, Mats Ã…bom, Leping Feng, Sergey Timouchev, Christophe Maliczak Investigation of sound generation from an axial fan for engine cooling. Proceedings of 3rd International symposium on Fan Noise 2007, 19-21 September, 2007, Lyon, France.

      [5] Yu. D. Khaletskii and A. S. Pochkin Fan noise reduction of an aircraft engine by inclining the outlet guide vanes. Acoustical Phys. 61(1), 2015, 101-108.

      [6] A. Guédel Acoustique des ventilateurs. CETIAT. PYC LIVRES, 1999

      [7] M.J. Lighthill 1952 Proceedings of the Royal Society, London A 211, 564-587. On sound generated aerodynamically. Part I. General Theory

      [8] N. Curle The influence of solid boundaries upon aerodynamic sound. Proc. Royal Soc. A 231, p.505-514, 1955

      [9] J.E. Flowcs-Williams and D.L. Hawkings Philosophical Transactions of the Royal Society A264, 321-342. Sound generation by turbulence and surfaces in arbitrary motion , 1969

      [10] W.R. Sears Some aspects of non-stationary airfoil theory and its practical application. Journal of the aeronautical sciences, vol. 8 (3), 1941

      [11] H. Atassi, G. Hamad Sound generated in a cascade by three-dimensional disturbances convected in a subsonic flow. Report NASA AIAA-81-2046, 1981

      [12] J.M. Tyler, T.G. Sofrin Axial flow compressor noise studies. SAE Trans., Vol.70, 1962, pp. 309-332

      [13] S. Caro, S. Moreau Comparaison d’une technique 2D de type Sears avec un calcul instationnaire direct pour le calcul du bruit de raies d’un ventilateur. Bruit des ventilateurs à basse vitesse. Actes du colloque tenu à l’Ecole Centrale de Lyon les 8 et 9 novembre 2001

      [14] S. Caro, R. Sandboge, J. Iyer, Y. Nishio Presentation of a CAA formulation based on Lighthill’s analogy for fan noise. Proceedings of 3rd International symposium on Fan Noise 2007, , Lyon, France, 19-21 September, 2007

      [15] F. Farassat and M.K. Myers 1988 Journal of Sound and Vibration 123, 451-461. Extension of Kirchhhoff’s formula to radiation from moving surfaces.

      [16] A.A. Aksenov, V.N. Gavrilyuk and S.F. Timushev. Numerical Simulation of Tonal Fan Noise of Computers and Air Conditioning Systems. ISSN 1063_7710, Acoustical Physics, 2016, Vol. 62, No. 4, pp. 447–455. © Pleiades Publishing, Ltd., 2016. Original Russian Text © A.A. Aksenov, V.N. Gavrilyuk, S.F. Timushev, 2016, published in Akusticheskii Zhurnal, 2016, Vol. 62, No. 4, pp. 442–450.

      [17] Timouchev S., Tourret J., Pavic G., Aksenov A. Numerical 2-D and 3-D methods for computation of internal unsteady pressure field and near-field noise of fans (Conference Paper) Noise Control Engineering Journal Volume 54, Issue 1, January 2006, Pages 15-20

      [18] Синер Ð.Ð. Методика выбора звукопоглощающих конÑтрукций Ð´Ð»Ñ Ñ‚ÑƒÑ€Ð±Ð¾Ð¼Ð°ÑˆÐ¸Ð½ на оÑнове математичеÑкого моделированиÑ. – ДиÑÑÐµÑ€Ñ‚Ð°Ñ†Ð¸Ñ Ð½Ð° ÑоиÑкание ученой Ñтепени кандидата техничеÑких наук, 2010

      [19] M.K.Mayers. On the acoustic boundary condition in the presence of flow. - Journal of Sound and Vibration 71(3), September 1980, 429-434.

      [20] E. Redon, A.-S. Bonnet-Ben Dhia, J.-F. Mercier and S. Poernomo Sari. Non-reflecting boundary conditions for acoustic propagation in ducts with acoustic treatment and mean flow. International Journal for Numerical Methods in Engineering, 86, 2011, 1360–1378.

      [21] A.A. Aksenov, V.N. Gavrilyuk and S.F. Timushev. Numerical Modeling of Fan Noise in Electronics. – NOVEM, 2015.

      [22] A. A. Aksenov, A. A. Dyad’kin, V. A. Kutin, I. V. Moskalev, G. B. Sushko, and S. A. Kharchenko, in Proc. All Russ. Sci. Conf. “Scientific Service in INTERNET Net; Solution of Large Problems†Novorossiisk, 2008.

      [23] M. J. Aftosmis, M.J. Berger. Multilevel Error Estimation and Adaptive h-Refinement for Cartesian Meshes with Embedded Boundaries. AIAA 2002-0863. 40th AIAA Aerospace Sciences. Meeting and Exhibit. 14-17 January 2002 / Reno NVtesian Meshes with Embedded Boundaries.

      [24] Mentor Graphics Corp. Advanced Immersed Boundary Cartesian Meshing Technology in FloEFD, 2011.

      [25] Sushko G.B., Kharchenko S.A. Multi-threaded parallel implementation of the iterative algorithm for solving systems of linear equations with dynamic load balancing (in Russian). Proceedings of the international conference "Parallel computational technologies" (PACT'2008), Saint-Petersburg, 28 january – 1 february 2008. Cheljabinsk, JuUrGU publ., 2008, p.452-457.

      [26] Sushko G.B., Kharchenko S.A. Experimental study on SKIF MGU "Chebyshev" of combined MPI+threads implementation of the iterative algorithm for solving SLAE's, appearing in FlowVision when modelling computational hydrodinamics problems (in Russian). Proceedings of the international conference "Parallel computational technologies" (PACT'2009), Nigniy Novgorod, 30 march – 3 april 2009. Cheljabinsk, JuUrGU publ., 2009, p.316-324.

      [27] Tester, B. J., “The propagation and attenuation of sound in lined ducts containing uniform or “plug†flow,†Journal of Sound and Vibration 28(2), 1973, 151-203.

      [28] A.A. Aksenov, V.N. Gavrilyuk and S.F. Timushev. Numerical Simulation of Tonal Fan Noise of Computers and Air Conditioning Systems. ISSN 1063_7710, Acoustical Physics, 2016, Vol. 62, No. 4, pp. 447–455. © Pleiades Publishing, Ltd., 2016. Original Russian Text © A.A. Aksenov, V.N. Gavrilyuk, S.F. Timushev, 2016, published in Akusticheskii Zhurnal, 2016, Vol. 62, No. 4, pp. 442–450.

  • Downloads

  • How to Cite

    F. Timushev, S., N. Gavrilyuk, V., A. Aksenov, A., & A. Kharchenko, S. (2018). Numerical Method for Modeling the Turbofan Engine Tonal Fan BPF Noise Generation and Propagation Accounting the SAS Complex Acoustic Impedance. International Journal of Engineering & Technology, 7(4.5), 416-422. https://doi.org/10.14419/ijet.v7i4.5.20195