Material Performance of Nickel Ions Adsorption by Larix Sibirica Needles

  • Authors

    • Tatiana R. Denisova
    • Damir A. Kharlyamo
    • Rumia Z. Galimova
    • Ildar G. Shaikhiev
    • Svetlana V. Sadykova
    2018-09-27
    https://doi.org/10.14419/ijet.v7i4.7.20551
  • sorption material, needles of a larch Siberian, ions of nickel, adsorption isotherm, water purification.
  • Adsorption of ions of nickel on alternative sorption material - needles of Siberian larch (Larix sibirica) is investigated at temperatures of 20, 30 and 40 0C. The maximum sorption capacities of needles of Larix sibirica in relation to ions of nickel (II) at temperatures of 20 are determined °C, 30° C, 40° C which made 0,80 mmol/g (47,2 mg/g), 0,87 mmol/g (51,3 mg/g) and 0,92 mmol/g (54,3 mg/g) respectively. Isotherms of adsorption are received and shortchanged with use of models of Langmuir, Friendlich, Temkin and Dubinin-Radushkevich. It is defined that process of adsorption of ions of Ni2+ at a temperature of 20the ° C is best of all described by Friendlich's model (R2 = 0,983), and at temperatures of 30° C and 40° C - the Langmuir model (R2 = 0,995 and 0,996 respectively). By the carried-out calculations it is defined that process of adsorption of ions of Ni2+ needles of Larix sibirica treat processes of physical adsorption as values of energy of adsorption have size less than 8 kJ/mol, and values of energy of Gibbs demonstrate spontaneous course of physical adsorption. Processing of kinetic dependences of processes of adsorption of ions of nickel (II) Larix sibirica needles at three temperatures within diffusive model defined the limiting stages of processes - the mixed diffusion.

     

     

  • References

    1. [1] P. Miretzky, A.F. Cirelli, Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review, Journal of Hazardous Materials, vol. 180, â„– 1-3, pp. 1-19, 2010.

      [2] V. О. Arief, K. Trilestari, J. Sunarso, N. Indraswati, S. Ismadji, Recent Progress on Biosorption of Heavy Metals from Liquids Using Low Cost Biosorbents: Characterization, Biosorption Parameters and Mechanism Studies, Clean, vol. 36, № 12, pp. 937-962, 2008.

      [3] N.A. Khan, S. Ibrahim, P. Subramaniam, Elimination of Heavy Metals from Wastewater Using Agricultural Wastes as Adsorbents, Malaysian Journal of Science, vol. 23, pp. 43-51, 2004.

      [4] J. Febrianto, A.N. Kosasih, J. Sunarso, Yi-Hsu Ju, N. Indraswati, S. Ismadji, Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies, Journal of Hazardous Materials, vol. 162, pp. 616-645, 2009.

      [5] T.A.H. Nguyen, H.H. Ngo, W.S. Guo, J. Zhang, S. Liang, Q.Y. Yue, Q. Li, T.V. Nguyen, Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater, Bioresource Technology, vol. 148, pp. 574-585, 2013.

      [6] D. S. Malik, C. K. Jain, Anuj K. Yadav, Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review, Applied Water Science, vol. 7, â„– 5, pp. 2113-2136, 2017.

      [7] I. Anastopoulos, M. Karamesouti, A.C. Mitropoulos, G.Z. Kyzas, A review for coffee adsorbents, Journal of Molecular Liquids, vol. 229, pp. 555–565, 2017.

      [8] B. Dhir, Potential of biological materials for removing heavy metals from wastewater, Environmental Science and Pollution Research, vol. 21, â„– 3, ppÑŽ 1614-1627, 2014.

      [9] R.K. Gautam, A. Mudhoo, G. Lofrano, M.C. Chattopadhyaya, Biomass–derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration, Journal of Environmental Chemical Engineering, vol. 2, pp. 239-259, 2014.

      [10] M.A. Mohammed, A. Shitu, M.A. Tadda, M. Ngabura, Utilization of various agricultural waste materials in the treatment of industrial wastewater containing heavy metals: A Review, International Research Journal of Environment Sciences, vol. 3, â„– 3, pp. 62-71, 2014.

      [11] S. Gao, T. Luo, Q. Zhou, W. Luo, H. Li, L. Jing, Surface sodium lignosulphonate-immobilized sawdust particle as an efficient adsorbent for capturing Hg2+ from aqueous solution, Journal of Colloid and Interface Science, vol. 517, pp. 9-17, 2018.

      [12] S. Demcak, M. Balintova, M. Hurakova, M.V. Frontasyeva , I. Zinicovscaia, N. Yushin, Utilization of poplar wood sawdust for heavy metals removal from model solutions, Nova Biotechnologica et Chimica, vol. 16, â„– 1, pp 26-31, 2017.

      [13] Çakir E., Tosunoğlu V., Boncukcuoğlu R., Korkmaz M., Fil B.A. Kinetic and Fixed Bed Studies for Copper Removal from Solutions by Walnut Tree Sawdust (Juglans regia Linnaeus), Global NEST Journal, vol 19, № 2, pp. 327-335, 2017.

      [14] V.N. Losev, E.V. Elsufiev, O.V. Buyko, A.K. Trofimchuk, R.V. Horda, O.V. Legenchuk, Extraction of precious metals from industrial solutions by the pine (Pinus sylvestris) sawdust-based biosorbent modified with thiourea groups, Hydrometallurgy, vol. 176, pp. 118-128, 2018.

      [15] Y. Bulut, Z. Tez, Removal of heavy metals from aqueous solution by sawdust adsorption, Journal of Environmental Sciences, vol. 19, pp. 160-166, 2007.

      [16] B. Das, Response surface modeling of copper (II) adsorption from aqueous solution onto neem (Azadirachta indica) bark powder: Central composite design approach, Journal of Materials and Environmental Sciences, vol. 8, â„– 7, pp. 2442-2454, 2017.

      [17] A. Sen, H. Pereira, M. A. Olivella, I. Villaescusa, Heavy metals removal in aqueous environments using bark as a biosorbent, International Journal of Environmental Science and Technology, vol. 12, pp. 391-404, 2015.

      [18] D.D. Fazullin, D.A. Kharlyamov, G.V. Mavrin, A.A. Alekseeva, S.V. Stepanova, I.G. Shaikhiev, A.S. Shaimardanova, The use of leaves of different tree species as a sorption material for extraction of heavy metal ions from aqueous media, International Journal of Pharmacy and Technology, vol. 8, â„– 2, pp. 14375-14391, 2016.

      [19] J. Zolgharnein, M. Bagtash, S. Feshki, P. Zolgharnein, D. Hammond, Crossed mixture process design optimization and adsorption characterization of multi-metal (Cu(II), Zn(II) and Ni(II)) removal by modified Buxus sempervirens tree leaves, Journal of the Taiwan Institute of Chemical Engineers, vol. 78, pp. 104-117, 2017.

      [20] S. Kuppusamy, P. Thavamani, M. Megharaj, K. Venkateswarlu, Y.B. Lee, R. Naidu, Oak (Quercus robur) Acorn Peel as a Low-Cost Adsorbent for Hexavalent Chromium Removal from Aquatic Ecosystems and Industrial Effluents, Water, Air & Soil Pollution, vol. 227, â„– 62, 11 p., 2016.

      [21] Vaghetti, J. C., Lima, E. C., Royer, B., Brasil, J. L., da Cunha, B. M., Simon, N. M., Cardoso, N. F., Noreña, C. P. Z., Application of Brazilian-pine fruit coat as a biosorbent to removal of Cr (VI) from aqueous solution—kinetics and equilibrium study, Biochemical Engineering Journal, vol. 42, pp. 67-76, 2008.

      [22] P.P. Ndibewu, R.L. Mnisi, S.N. Mokgalaka, R.I. McCrindle, Heavy metal removal in aqueous systems using Moringa oleifera: A Review, Journal of Materials Science and Engineering, vol. 1, â„– 6, pp. 143-153, 2011.

      [23] H.S. Altundoğan, A. Topdemir, M. Çakmak, N. Bahar, Hardness removal from waters by using citric acid modified pine cone, Journal of the Taiwan Institute of Chemical Engineers, vol. 58, pp. 219-225, 2016.

      [24] C. Kütahyali, Ş. Sert, B. Çetinkaya, S. Inan, M. Eral, Factors Affecting Lanthanum and Cerium Biosorption on Pinus brutia Leaf Powder, Separation Science and Technology, vol. 45, № 10, pp. 1456-1462, 2010.

      [25] M. Dakiky , M. Khamis, A. Manassra, M. Mer'eb, Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents, Advances in Environmental Research, vol. 6, № 4, pp. 533–540, 2002.

      [26] H. Serencam, A. Gundogdu, Y. Uygur, B. Kemer, V.N. Bulut, C. Duran, M. Soylak, M. Tufekci, Removal of cadmium from aqueous solution by Nordmann fir (Abies nordmanniana (Stev.) Spach. Subsp. nordmanniana) leaves, Bioresource Technology, vol. 99, pp. 1992-2000, 2008.

      [27] M. Aoyama, T. Sugiyama, S. Doi, N.-S Cho, H.-E. Kim, Removal of Hexavalent Chromium from Dilute Aqueous Solution by Coniferous Leaves, Holzforschung, vol. 53, â„– 4, pp. 365-368, 2005.

      [28] N.S. Cho, M. Aoyama, K. Seki, N. Hayashi, S. Doi, Adsorption by coniferous leaves of chromium ions from effluent, Journal of Wood Science, vol. 45, pp. 266-270, 1999.

      [29] T.R. Denisova, R.Z. Galimova, I.G. Shaikhiev, G.V. Mavrin, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7, 5, 1765–1771 (2016).

  • Downloads

  • How to Cite

    R. Denisova, T., A. Kharlyamo, D., Z. Galimova, R., G. Shaikhiev, I., & V. Sadykova, S. (2018). Material Performance of Nickel Ions Adsorption by Larix Sibirica Needles. International Journal of Engineering & Technology, 7(4.7), 219-222. https://doi.org/10.14419/ijet.v7i4.7.20551