Modified Curvature-based Trigonometric Identities for Retinal Blood Vessel Tortuosity Measurement in Diabetic Retinopathy Fundus Images
-
2018-10-02 https://doi.org/10.14419/ijet.v7i4.11.20788 -
Tortuosity, Curvature-based Method, Retinal Blood Vessel, Diabetic Retinopathy, Digital Fundus Images. -
Abstract
In current clinical practice, there is no specific standard and grading system that can be used to measure the behaviour of the retinal blood vessel curvature. The retinal blood vessel curvature is measured based on clinical experiences. It is very subjective and inconsistent to describe the presence of tortuosity in fundus images. Thus, this paper aims to measure the tortuosity of retinal blood vessel using curvature-based method and investigate its relationship with diabetic retinopathy (DR) disease. The proposed tortuosity measures have been tested on 43 fundus images belonging to patients who have been diagnosed with DR disease and validated by two clinical experts from our collaborative hospital. On average, the proposed algorithm achieved 90.7% (accuracy), 98.72% (sensitivity) and 9.3% (false negative rate), that shows significant tortuosity presence in diabetic retinopathy fundus images.
Â
-
References
[1] Sulaiman L. H. Beban penyakit diabetes: Kos hanya untuk rawatan mencecah RM4 bilion setahun. 2016, http://www.utusan.com.my/gaya-hidup/kesihatan/beban-penyakit-diabetes-1.208881.
[2] Bernama. Pesakit kencing manis berdepan risiko buta. 2015, http://www.sinarharian.com.my/nasional/pesakit-kencing-manis-berdepan-risiko-buta-1.438659.
[3] Kauppi T., Kalesnykiene V., Kamarainen J.-K., L. Lensu, Sorri I., Ranien A., Voutilainen R., Pietila J., Kalviainen H. and Uusitalo H. The DIARETDB1 diabetic retinopathy database and evaluation protocol. Proceedings of the British Machine Vision Conference 2007, pp. 1–10.
[4] W. Mimi Diyana W. Zaki, M. Asyraf Zulkifley, Aini Hussain, W. Haslina W. A. Halim, N. Badariah. A. Mustafa and Lim Sin Ting. Diabetic retinopathy assessment: Towards an automated system. Biomedical Signal Processing and Control 2016, 24, pp. 72–82.
[5] Mustafa Nur Badariah Ahmad, Wan Mimi Diyana Wan Zaki and Aini Hussain. A review on the diabetic retinopathy assessment based on retinal vascular tortuosity. Proceedings of the IEEE 11th International Colloquium on Signal Processing and Its Applications 2015, pp. 127–130.
[6] Grisan E., Foracchia M. and Ruggeri A. A novel method for the automatic grading of retinal vessel tortuosity. IEEE Transactions on Medical Imaging 2008, 27(3), 310–319.
[7] Hirsch I. B., Brownlee M. Beyond hemoglobin A1c - need for additional markers of risk for diabetic microvascular complications. Journal of the American Medical Association 2010, 303(22), 2291–2292.
[8] Sasongko M. B., Wong T. Y., Nguyen T. T., Shaw J. E., Jenkins A. J. and Wang J. J. Novel versus traditional risk markers for diabetic retinopathy. Diabetologia 2012, 55(3), 666–670.
[9] Kalitzeos A. A., Lip G. Y. H. and Heitmar R. Retinal vessel tortuosity measures and their applications. Experimental Eye Research 2013, 106, 40–46.
[10] Cheung C. Y., Lamoureux E., Ikram M.K., Sasongko M.B., Ding J., Zheng Y., Mitchell P., Wang J.J. and Wong T.Y. Retinal vascular geometry in Asian persons with diabetes and retinopathy. Journal of Diabetes Science and Technology 2012, 6(3), 595–605.
[11] Mapayi T., Tapamo J.-R., Viriri S. and Adio A. Automatic retinal vessel detection and tortuosity measurement. Image Analysis and Stereology 2016, 35(2), 117–135.
[12] Early Treatment Diabetic Retinopathy Study Research Group and others. Grading diabetic retinopathy from stereoscopic color fundus photographs - an extension of the modified Airlie House classification: ETDRS report number 10. Ophthalmology 1991, 98(5), 786–806.
[13] Aghamohamadian-Sharbaf M., Pourreza H. R. and Banaee T. A novel curvature-based algorithm for automatic grading of retinal blood vessel tortuosity. IEEE Journal of Biomedical and Health Informatics 2016, 20(2), 586–595.
[14] Dougherty G., Johnson M. J. and Wiers M. D. Measurement of retinal vascular tortuosity and its application to retinal pathologies. Medical and Biology Engineering and Computing 2010, 48(1), 87-.
[15] Turior R., Onkaew D., Uyyanonvara B. and Chutinantvarodom P. Quantification and classification of retinal vessel tortuosity. Science Asia 2013, 39, 265–277.
[16] Sasongko M. B., Wong T.Y., Nguyen T.T., Cheung C.Y., Shaw J.E., Kawasaki R., Lamoureux E. and Wang J.J. Retinal vessel tortuosity and its relation to traditional and novel vascular risk markers in persons with diabetes. Current Eye Research 2016, 41(4), 551–557.
[17] Ding J.; Ikram M. K., Cheung C. Y. and Wong T. Y. Retinal vascular calibre as a predictor of incidence and progression of diabetic retinopathy. Clinical and Experimental Optometry 2012, 95(3), 290–296.
[18] Ikram M. K., Cheung C.Y., Lorenzi M., Klein R., Jones T.L. and Wong T.Y. Retinal vascular caliber as a biomarker for diabetes microvascular complications. Diabetes Care 2013, 36(3), 750–759.
[19] Johnson M. J., Dougherty G. Robust measures of three-dimensional vascular tortuosity based on the minimum curvature of approximating polynomial spline fits to the vessel mid-line. Medical Engineering and Physics 2007, 29(6), 677–690.
[20] Onkaew D., Turior R., Uyyanonvara B., Akinori N. and Sinthanayothin C. Automatic retinal vessel tortuosity measurement using curvature of improved chain code. Proceedings of the International Conference on Electrical, Control and Computer Engineering 2011, pp. 183–186.
[21] Turior R., Uyyanonvara B. Curvature-based tortuosity evaluation for infant retinal images. Journal of Information Engineering and Applications 2012, 2(8), 9-17.
[22] Bribiesca E. A measure of tortuosity based on chain coding. Pattern Recognition 2013, 46(3), 716–724.
[23] Staal J., Abrà moff M. D., Niemeijer M., Viergever M. A. and Van Ginneken B. Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging 2004, 23(4), 501–509.
[24] Hoover A., Goldbaum M. Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Transactions on Medical Imaging 2003, 22(8), 951–958.
[25] Odstrcilik J., Kolar R., Budai A., Horneggar J., Jan J., Gazarek J., Kubena T., Cernosek P., Svoboda O. and Angelopoulou E. Retinal vessel segmentation by improved matched filtering: Evaluation on a new high-resolution fundus image database. IET Image Processing 2013, 7(4), 373–383.
[26] Patil C. M. An approach for the detection of vascular abnormalities in diabetic retinopathy. International Journal of Data Mining Techniques and Applications 2013, 2, 246–250.
[27] Abramoff M. D., Niemeijer M. and Russell S. R. Automated detection of diabetic retinopathy: Barriers to translation into clinical practice. Expert Review on Medical Devices 2010, 7(2), 287–296.
[28] Philip S., Fleming A.D., Goatman K.A., Fonseca S., McNamee P., Scotlang G.S., Prescott G.J., Sharp P.F. and Olson J.A. The efficacy of automated disease/no disease grading for diabetic retinopathy in a systematic screening programme. British Journal of Ophthalmology 2007, 91(11), 1512–1517.
[29] Scotland G. S., McNamee P., Philip S., Fleming A.D., Goatman K.A., Prescott G.J., Fonseca S., Sharp P.F. and Olson J. A. Cost-effectiveness of implementing automated grading within the national screening programme for diabetic retinopathy in Scotland. British Journal of Ophthalmology 2007, 91(11), 1518–1523.
[30] Hart W. E., Goldbaum M., Côté B., Kube P. and Nelson M. R. Measurement and classification of retinal vascular tortuosity. International Journal of Medical Informatics 1999, 53(2-3), 239–252.
[31] Dougherty G., Johnson M. J. Clinical applications of three-dimensional tortuosity metrics. Proceedings of the Volume 6511, Medical Imaging 2007: Physiology, Function, and Structure from Medical Images 2007, pp. 1-9.
[32] Sasongko M. B., Wong T. Y., Nguyen T. T., Cheung C. Y., Shaw J. E. and Wang J. J. Retinal vascular tortuosity in persons with diabetes and diabetic retinopathy. Diabetologia 2011, 54(9), 2409–2416.
[33] Weiler D. L., Engelke C. B., Moore A. L. O. and Harrison W. W. Arteriole tortuosity associated with diabetic retinopathy and cholesterol. Optometry and Vision Science 2015, 92(3), 384–391
[34] Iorga M., Dougherty G. Tortuosity as an indicator of the severity of diabetic retinopathy. In G. Dougherty (Ed.), Medical Image Processing. Biological and Medical Physics, Biomedical Engineering. New York: Springer, 2011, pp. 269–290.
[35] Sasongko M. B., Wong T.Y., Donaghue K. C., Cheung N., Jenkins A.J., Aguirre P.B. and Wang J.J. Retinal arteriolar tortuosity is associated with retinopathy and early kidney dysfunction in type 1 diabetes. American Journal of Ophthalmology 2012, 153(1), 176–183.
[36] Tam J., Dhamdhere K.P., Tiruveedhula P., Manzanera S., Barez S., Bearse Jr M. A., Adams A.J. and Roorda A. Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy. Investigate Ophthalmology and Visual Science 2011, 52(12), 9257–9266.
[37] Abdalla M., Hunter A. and Al-Diri B. Quantifying retinal blood vessels’ tortuosity. Proceedings of the Science and Information Conference, 2015, pp. 687–693.
[38] Lotmar W., Freiburghaus A. and Bracher D. Measurement of vessel tortuosity on fundus photographs. Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie 1979, 211(1), 49–57.
[39] Capowski J. J., Kylstra J. A. and Freedman S. F. A numeric index based on spatial frequency for the tortuosity of retinal vessels and its application to plus disease in retinopathy of prematurity. Retina (Philadelphia, Pa.) 1995, 15(6), 490–500.
[40] Heneghan C., Flynn J., O'Keefe M. and Cahill M. Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis. Medical Image Analysis 2002, 6(4), 407–429.
[41] Swanson C., Cocker K. D., Parker K. H., Moseley M. J. and Fielder A. R. Semiautomated computer analysis of vessel growth in preterm infants without and with ROP. British Journal of Ophthalmology 2003, 87(12), 1474–1477.
[42] Gelman R., Jiang L., Du Y. E., Martinez-Perez M. E., Flynn J. T. and Chiang M. F. Plus disease in retinopathy of prematurity: Pilot study of computer-based and expert diagnosis. Journal of American Association for Pediatric Ophthalmology and Strabismus 2007, 11(6), 532–540.
[43] Gelman R., Martinez-Perez M. E., Vanderveen D. K., Moskowitz A. and Fulton A. B. Diagnosis of plus disease in retinopathy of prematurity using Retinal Image multiScale Analysis. Investigative Ophthalmology and Visual Science 2005, 46(12), 4734–4738.
[44] Wallace D. K. Computer-assisted quantification of vascular tortuosity in retinopathy of prematurity (an American Ophthalmological Society thesis). Transactions of the American Ophthalmological Society 2007, 105, 594-615.
[45] Wallace D. K., Freedman S. F. and Zhao Z. Evolution of plus disease in retinopathy of prematurity: Quantification by ROPtool. Transactions of the American Ophthalmological Society 2009, 107, 47-52.
[46] Oloumi F., Rangayyan R. M. and Ells A. L. Assessment of vessel tortuosity in retinal images of preterm infants. Proceedings of the 36th Annual International Conference of the IEEE in Engineering in Medicine and Biology Society 2014, pp. 5410–5413.
[47] Rodriguez Z. M., Kenny P. and Gaynor L. Improved characterisation of aortic tortuosity. Medical Engineering and Physics 2011, 33(6), 712–719.
[48] Dougherty G., Varro J. A quantitative index for the measurement of the tortuosity of blood vessels. Medical Engineering and Physics 2000, 22(8), pp. 567–574.
[49] Wert A., Scott S. E. A new approach to measuring tortuosity. Proceedings of the Volume 8315, Medical Imaging 2012: Computer-Aided Diagnosis 2012, pp. 1-6.
[50] Chakravarty A., Sivaswamy J. A novel approach for quantification of retinal vessel tortuosity using quadratic polynomial decomposition. Proceedings of the Indian Conference on Medical Informatics and Telemedicine 2013, pp. 7–12.
[51] [51] V Nguyen U. T., Bhuiyan A., Park L. A. F. and Ramamohanarao K. An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recognition 2013, 46(3), 703–715.
[52] Hou Y. Automatic segmentation of retinal blood vessels based on improved multiscale line detection. Journal of Computing Science and Engineering 2014, 8(2), 119–128.
[53] Guo Z., Hall R. W. Parallel thinning with two-subiteration algorithms. Communications of the ACM 1989, 32(3), 359–373.
[54] Pourreza H. R., Pourreza M. and Banaee T. Simple and efficient method to measure vessel tortuosity. Proceedings of the 3th International Conference on Computer and Knowledge Engineering 2013, pp. 219–222.
-
Downloads
-
How to Cite
Badariah A. Mustafa, N., Mimi Diyana W. Zaki, W., Hussain, A., & Che Hamzah, J. (2018). Modified Curvature-based Trigonometric Identities for Retinal Blood Vessel Tortuosity Measurement in Diabetic Retinopathy Fundus Images. International Journal of Engineering & Technology, 7(4.11), 133-139. https://doi.org/10.14419/ijet.v7i4.11.20788Received date: 2018-10-02
Accepted date: 2018-10-02
Published date: 2018-10-02