A simple and efficient wavelet approach for evaluating surface integral over curved domain

  • Authors

    • K. T. Shivaram
    • S. Kiran
    2018-09-22
    https://doi.org/10.14419/ijet.v7i4.5.21145
  • Numerical Integration, Hear Wavelet Method, Curved Domain
  • Abstract

    This paper presents, a simple and efficient wavelet approach for computing the surface integrals over irregular or curved dom ain, the limit of the integrals are nonlinear function are transformed to standard two square by using finite element basis function, Haar wavelet based integration technique is applied to evaluation of surface integral over curved domain, the computational efficiency of the method is illustrated with several numerical examples.

     

  • References

    1. [1] D. A. Dunavant (1985), High degree efficient symmetrical Gaussian Quadrature rules for triangle, Int. J. Numer. Methods, Eng. 21, 1129–1148.

      [2] G. Lague and R. Baldur (1977) Extended numerical integration method for triangular surfaces, Int. J. Numer. Methods Eng. 11, 388– 392.

      [3] Md. S. Islam, M. Alamgir Hossain (2009), Numerical integrations over an arbitrary quadrilateral region, Appl. Math. Comput. 210, 515-524.

      [4] K.T. Shivaram (2013), Gauss Legendre quadrature over a parabolic region, Int. J. Eng. Res. & Tech, 10,927-931.

      [5] K.T. Shivaram ( 2014), Numerical integration over an arbitrary rectangle and square region using Generalized Gaussian quadrature rules, International Journal of Mathematical Archive, 5, 1-5.

      [6] K.T. Shivaram(2013), Gauss Legendre Quadrature over a unit circle International Journal of Engineering Research & Technology, 2, 1043-1047.

      [7] C.-J. Li, R.-H. Wang (2006), a new 8-node quadrilateral cubic spline finite element, J. Comput. Appl. Math.195, 54 – 65.

  • Downloads

  • How to Cite

    T. Shivaram, K., & Kiran, S. (2018). A simple and efficient wavelet approach for evaluating surface integral over curved domain. International Journal of Engineering & Technology, 7(4.5), 511-513. https://doi.org/10.14419/ijet.v7i4.5.21145

    Received date: 2018-10-07

    Accepted date: 2018-10-07

    Published date: 2018-09-22