Bounds of Laplacian Energy of a Hypercube Graph

  • Authors

    • K. Ameenal Bibi
    • B. Vijayalakshmi
    • R. Jothilakshmi
    2018-10-02
    https://doi.org/10.14419/ijet.v7i4.10.21287
  • Hypercube graph, Laplacian Energy, Regular graph
  • Abstract

    Let  Qn denote  the n – dimensional  hypercube  with  order   2n and  size n2n-1. The  Laplacian  L  is defined  by  L = D  where D is  the  degree  matrix and  A is  the  adjacency  matrix  with  zero  diagonal  entries.  The  Laplacian  is a  symmetric  positive  semidefinite.  Let  µ1 ≥ µ2 ≥ ....µn-1 ≥ µn = 0 be the eigen values of  the Laplacian matrix.  The  Laplacian  energy is defined as  LE(G) = . In  this  paper, we  defined  Laplacian  energy  of  a  Hypercube  graph  and  also attained  the  lower  bounds.

     

     

     

  • References

    1. [1] Balakrishnan. R (2004), The energy of a graph, Linear Algebra and its applications, 287-295.

      [2] Bapat R. B , Pati S(2011), Energy of a graph is never an odd integer. Bull.Kerala Math. Assoc. 1, 129-132

      [3] Bo Zhou (2004), Energy of a graph, MATCH commu. Math. Chem. 51, 111-118.

      [4] Bo Zhou and Ivan Gutman (2007) , On Laplacian energy of a graph, Match commu. Math. Comput. Chem. 57, 211-220.

      [5] Bo Zhou (2010), More on Energy and Laplacian Energy Math. Commun. Math. Comput. Chem. 64, 75-84.

      [6] Bo Zhou and Ivan Gutman (2006), On Laplacian energy of a graph, Linear algebra and its applications, 41, 429-37.

      [7] Cvetkovi’c .D, Doob M, Sachs H (1980), Spectra of graphs - Theory and applications, Academic Press, New York.

      [8] Gholam Hossein, Fath - Tabar and Ali Reza Asharfi (2010), Some remarks on Laplacian eigen values and Laplacian energy of graphs, Math. Commun., vol.15, No.2, 443-451.

      [9] Ivan Gutman, Emina Milovanovic, and Igor Milovanovic (2015), Bounds or Laplacian- Type graph energies, Math. Commun.,vol. 16 No. 1, 195-203.

      [10] Ivan Gutman(1978), The energy of a graph. Ber. Math – statist. Sekt. Forschungsz. Graz, 103, 1-22.

      [11] Juan Rada, Antonio Tinio (2004), Upper and Lower bounds for the energy of bipartite graph, Journal of Mathematics analysis and application, vol.289, 446-455.

      [12] Kinkar Ch. Das, Seyed Ahamed Mojallal, Ivan Gutman (2016) , On energy and Laplacian energy of bipartite graphs, Applied Mathematics and Computation 273, 759-766.

      [13] Merris .M (1994), Laplacian matrices of graphs, A survey, Lin. Algeba Appl. 143-176.

      [14] Nathan Reff (2011), New Bounds for the Laplacian Spectral Radius of a Signed graph, arXiv:1103, 4629VI[Math.Co], 21-23.

      [15] Stanley F. Florkowski I (2004), Spectral Graph theory of the Hypercube (Thesis).

      [16] Xiaogenchen, Wanwenxie (2012), Energy of hypercube and its complement, International Journal of Algebra, Vol 6, No.16, 799 – 805.

  • Downloads

  • How to Cite

    Ameenal Bibi, K., Vijayalakshmi, B., & Jothilakshmi, R. (2018). Bounds of Laplacian Energy of a Hypercube Graph. International Journal of Engineering & Technology, 7(4.10), 582-584. https://doi.org/10.14419/ijet.v7i4.10.21287

    Received date: 2018-10-08

    Accepted date: 2018-10-08

    Published date: 2018-10-02