The Split Distance 2 Domination in Graphs

  • Authors

    • A. Lakshmi
    • K. Ameenal Bibi
    • R. Jothilakshmi
    2018-10-02
    https://doi.org/10.14419/ijet.v7i4.10.21289
  • Dominating set, split dominating set, distance -2 dominating set, split distance -2 dominating set, split distance -2 domination Number.
  • Abstract

    A distance - 2 dominating set D V of a graph G is a split distance - 2 dominating set if the induced sub graph <V-D> is disconnected. The split distance - 2 domination number is the minimum cardinality of a split distance - 2 dominating set. In this paper, we defined the notion of split distance - 2 domination in graph. We got many bounds on distance - 2 split domination number. Exact values of this new parameter are obtained for some standard graphs. Nordhaus - Gaddum type results are also obtained for this new parameter.

     

     

  • References

    1. [1] AmeenalBibi, K. and Selvakumar, R (2010), The Inverse split and non-split domination numbers in graph. International Journal of Computer Applications 8(7), pp. 21-29.

      [2] AmeenalBibi, K. and Selvakumar, R (2010), The Inverse strong non-split r-domination number of a graph. International Journal of Engineering, Science and Technology, Vol.2, No.1, pp.127-133

      [3] Cockayne, E.J. Dawes, R.M. and Hedetniemi, S.T. (1980). Total domination in graphs. Networks, vol.10, pp.211-219.

      [4] E.J.Cockayne, S.T.Hedetniemi (1977), Towards a Theory of Domination in Graphs, Networks. vol.7, pp.247-261.

      [5] Domke G.S., Dunbar J.E. and Markus, L.R (2004), The Inverse domination number of a graph, Ars. Combin 72, pp.149-160.

      [6] O.Favaron and D.Kratsch (1991) Ratios of domination parameters, Advances in graph theory, Viswa International Publication, Gulbarga, pp.173-182.

      [7] P. Fraisse(1988), A note on distance dominating cycles. Discrete Math. 71, pp.89-92.

      [8] A. Hansberg, D. Meierling, and L. Volkmann (2007), Distance domination and distance irredundance in graphs. Electronic J.Combin. 14, #R35.

      [9] Harary. F (1969) Graph Theory, Addison – Wesley Reading Mars.

      [10] Haynes, T.W., Hedetniemi .S.T. and Slater.P.J (1998), Domination in Graphs: Advanced Topics, Marcel Dekker Inc. New York, U.S.A.

      [11] Haynes, T.W., Hedetniemi .S.T. and Slater.P.J (1998)b, Fundamentals of domination in Graphs, Marcel Dekkel Inc. New York, U.S.A.

      [12] M.A. Henning, O.R. Oellermann and H.C. Swart (1991), Bounds on distance domination parameters. J.Combin. Inform. System Sci 16, pp.11-18.

      [13] V.R.Kulli and B.Janakiram (1997), The split domination number of a graph. Graph Theory Notes of New York, New York Academy of Sciences, XXXII, pp.16-19.

      [14] V.R.Kulli and B.Janakiram (2006), The strong split domination number of a graph. Acta Ciencia Indica, 32M, pp.715-720.

      [15] V.R.Kulli and B.Janakiram (2000), The non-split domination number of a graph. Indian J. Pure Appl. Math, pp.545-550

      [16] V.R.Kulli and B.Janakiram(2003), The strong non-split domination number of a graph. Internat. J. Management Systems,19, pp.145-156.

      [17] Kulli, V.R and Sigarkanti, S.C (1991), Inverse dominating in graphs. National Academy Science Letters, 15.

      [18] V.R. Kulli (2010), Theory of domination in graphs. Vishwa International Publications, Gulbarga, India.

      [19] V. R. Kulli (2012), Advances in domination theory Vishwa International Publications, Gulbarga, India.

      [20] D. Meierling and L.Volkmann (2005), A lower bound for the distance k-domination number of trees, Result. Math. 47, pp.335-339.

      [21] Nordhaus, E.A and Gaddam, J.W (1956). On complementary graphs. Amer. Math. Monthly, Vol.63, pp.175-177.

      [22] Ore, O.(1962),Theory of Graphs. American Mathematical Society colloq. Publ., Providence, R1, 38.

      [23] Randy Davila, Caleb Fast, Michael A. Henning and Franklin Kenter (2015), Lower bounds on the distance domination number of a Graph. arXiv:1507.08745v1 [math.co] 31.

      [24] F. Tian and J.M.Xu (2009), A note on distance domination numbers of graphs. Australasian j. Combin. 43, pp.181-190.

  • Downloads

  • How to Cite

    Lakshmi, A., Ameenal Bibi, K., & Jothilakshmi, R. (2018). The Split Distance 2 Domination in Graphs. International Journal of Engineering & Technology, 7(4.10), 589-592. https://doi.org/10.14419/ijet.v7i4.10.21289

    Received date: 2018-10-08

    Accepted date: 2018-10-08

    Published date: 2018-10-02