Numerical Analysis of a Fractional Order Discrete Prey – Predator System with Functional Response
-
2018-10-02 https://doi.org/10.14419/ijet.v7i4.10.21311 -
Predator Prey System, Fractional Order, Functional Response, Discretization, Stability, Bifurcation. -
Abstract
This study presents numerical examples of Discrete Fractional Order Prey Predator interactions with Functional Response. The process of discretization is applied and the version of discrete equations is obtained. Fixed points are determined and the stability around the fixed points is analyzed. Also the theoretical analysis has been verified from the numerical simulations, which help better understanding of the proposed system. Rich dynamics of system is exhibited by Bifurcation diagram and Periodic Oscillations for suitable parameters values.
Â
Â
-
References
[1] A. M. A. El-Sayed and S M Salman (2013), On a Discretization Process of Fractional-order Riccati Differential Equation, Journal of Fractional Calculus and Applications, Vol. 4, No.2, , pp.251-259.
[2] Berryman, A.A. (1992), The origins and evolution of predator prey theory, Ecology, Vol.73, No.5, pp.1530-1535. doi:https://doi.org/10.2307/1940005.
[3] B. S. N. Murthy, M. A. S. Srinivas and Y. Narasimhulu (2017), A Three Species Prey-Predator Holling Type-II Non-Autonomous Discrete Model, Indian Journal of Science and Technology, Vol.10, No.22, 14 pages. doi:10.17485/ijst/2017/v10i22/108930.
[4] Ching-Shan chou and Avner Friedman (2016), Introduction to Mathematical Biology: Modeling, Analysis, and Simulations, Springer International Edition. pp. 1-172. doi:10.1007/978-3-319-29638-8.
[5] H.N. Agiza, E.M. ELabbasy, H. EL-Metwally, A.A. Elsadany (2009), Chaotic dynamics of a discrete prey – predator model with Holling type II, Nonlinear Analysis: Real World Applications, Vol.10,No.1,pp.116-129. doi:https://doi.org/10.1016/j.nonrwa.2007.08.029.
[6] Ivo Petras (2011), Fractional order Nonlinear Systems - Modeling, Analysis and Simulation, Higher Education Press, Springer International Edition, pp.1-218. doi:https://doi.org/10.1007/978-3-642-18101-6.
[7] El-Sayed, AMA (1992), On the fractional differential equations, J. Appl. Math. Comput. Vol.49, No.(2-3), pp.205-213. doi:https://doi.org/10.1016/0096-3003(92)90024-u.
[8] Ravi P Agarwal, Ahmed MA El-Sayed and Sanaa M Salman (2013), Fractional-order Chuas system: discretization, bifurcation and chaos, Agarwal et al. Advances in Difference Equations, Vol.2013, No.1. doi:https://doi.org/10.1186/1687-1847-2013-320.
[9] Saber Elaydi(2008), An Introduction to Difference Equations, 3rd edn, Springer International Edition, First Indian Reprint. pp.1-539 doi:https://doi.org/10.1007/978-1-4757-9168-6.
[10] Xiaoli Liu, Dongmei Xiao (2007), Complex dynamic behaviors of a discrete-time predator - prey system, Chaos, Solutions and Fractals, Vol.32, No.1, , pp.80-94. doi:https://doi.org/10.1016/j.chaos.2005.10.081.
-
Downloads
-
How to Cite
George Maria Selvam, A., & Janagaraj, R. (2018). Numerical Analysis of a Fractional Order Discrete Prey – Predator System with Functional Response. International Journal of Engineering & Technology, 7(4.10), 681-684. https://doi.org/10.14419/ijet.v7i4.10.21311Received date: 2018-10-08
Accepted date: 2018-10-08
Published date: 2018-10-02