Application of geochemical, mineralogical and geotechnical methods to site characterization for road construction purposes at a1 highway northeastern Algeria

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    This research study focused on the role of the lithological, physical–mechanical and structural factors in the slope movements’ genesis using a combination of methods. The geochemical, mineralogical and geotechnical characteristics of the study area soils were identified by various tests and analyzes such as X-ray diffractometry, X-ray fluoricence, infrared spectroscopy, particle size distribution and Atterberg Limit. This study was carried out through the comprehensive compilation of the analyzes results to qualitatively assess the tendency of the study area geological formations to sliding wich are commonly composed of fine-grained soils. Quantitative and qualitative claycontain of the soils were examined in relation on 12 historical landslides. It was found that laboratory determined instabilities of the basement materials from the slip zones was closely related to clay content, liquid limit and plasticity index. This study has allowed to improve the understanding of the genesis of mass wastiong under the study site.

  • References

      [1] Zahri F. Boukelloul M, Hadji R, Talhi K (2016) Slope Stability Analysis In Open Pit Mines Of Jebel Gustar Career, Ne Algeria – A Multi-Steps Approach. Mining Science, 23: 137−146.

      [2] Mahdadi, F., Boumezbeur, A., Hadji, R., Kanungo, D. P., & Zahri, F. (2018). GIS-based landslide susceptibility assessment using statistical models: a case study from Souk Ahras province, NE Algeria. Arabian Journal of Geosciences, 11(17), 476.

      [3] Hadji R, Boumazbeur A, Limani Y, Baghem M, Chouabi A, (2013) Geologic, topographic and climatic controls in landslide hazard assessment-using GIS modeling a case study of Souk Ahras region, NE Algeria. Quaternary International.302: 224-237.

      [4] Hadji R, Raïs K, Gadri L, Chouabi A, Hamed Y (2017) Slope failures characteristics and slope movement susceptibility assessment using GIS in a medium scale: a case study from Ouled Driss and Machroha municipalities, Northeastern of Algeria, Arabian Journal for Science and Engineering, Arab J Sci Eng 42:281–300.

      [5] Gariano, S. L., & Guzzetti, F. (2016). Landslides in a changing climate. Earth-Science Reviews, 162, 227-252.

      [6] Hadji, R., Limani, Y., Demdoum, A. (2014). Using multivariate approach and GIS applications to predict slope instability hazard case study of Machrouha municipality, NE Algeria. 10.1109/ICT-DM.2014.6917787 Publisher: IEEE Xplore. Print ISBN: 978-1-4799-4768-3, Accession Number: 14651190.

      [7] Guadri L, Hadji R, Zahri F, Raїs K (2015) the quarries edges stability in opencast mines: A case study of the Jebel Onk phosphate mine, NE Algeria. Arabian Journal of Geosciences Arab J Geosci 8:8987–8997.

      [8] Achour, Y., Boumezbeur, A., Hadji, R. et al. (2017) Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arab J Geosci (2017) 10: 194.

      [9] Hadji R., Achour Y., Hamed Y. (2018) Using GIS and RS for Slope Movement Susceptibility Mapping: Comparing AHP, LI and LR Methods for the Oued Mellah Basin, NE Algeria. In: Kallel A., Ksibi M., Ben Dhia H., Khélifi N. (eds) Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions. EMCEI 2017. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Springer, Cham.

      [10] Abdelouahad M, Hadji R, Fehdi C (2018) Use of slope failures inventory and climatic data for landslide susceptibility, vulnerability, and risk mapping in souk Ahras region, Mining Science 2017;24:237–235 DOI:

      [11] Zighmi K., Hadji, R., & Hamed, Y. (2018) GIS-Based Approaches for the Landslide Susceptibility Prediction in Setif Region (NE Algeria). Geotechnical and Geological Engineering, 1-16.

      [12] Hamed, Y., Hadji, R., Redhaounia, B., Zighmi, K., Bâali, F., & El Gayar, A. (2018). Climate impact on surface and groundwater in North Africa: a global synthesis of findings and recommendations. Euro-Mediterranean Journal for Environmental Integration, 3(1), 25.

      [13] Hadji R, Chouabi A, Gadri L, Raïs K, Hamed Y, Boumazbeur A (2016) Application of linear indexing model and GIS techniques for the slope movement susceptibility modeling in Bousselam upstream basin, Northeast Algeria, Arabian Journal of Geosciences 9:192.

      [14] Demdoum, A., Hamed, Y., Feki, M., Hadji, R., Djebbar, M. (2015). Multi-tracer investigation of groundwater in El Eulma Basin (Northwestern Algeria), North Africa. Arabian Journal of Geosciences, 8(5):3321-3333.

      [15] Hadji R, Limani Y, Boumazbeur A, DemdoumA, Zighmi K, Zahri F, Chouabi A (2014). Climate change and their influence on shrinkage - swelling clays susceptibility in a semi - arid zone: a case study of Souk Ahras municipality, NE-Algeria. Desalination and Water Treatment 52 (10-12): 2057-2072.

      [16] Athmania, D., Benaissa, A., Hammadi, A., & Bouassida, M. (2010). Clay and marl formation susceptibility in Mila province, Algeria. Geotechnical and Geological Engineering, 28(6), 805-813.

      [17] Dahoua L., Yakovitch S.V., Hadji R., Farid Z. (2018) Landslide Susceptibility Mapping Using Analytic Hierarchy Process Method in BBA-Bouira Region, Case Study of East-West Highway, NE Algeria. In: Kallel A., Ksibi M., Ben Dhia H., Khélifi N. (eds) Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions. EMCEI 2017. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Springer, Cham.

      [18] Dahoua, L., Yakovitch, S. V., & Hadji, R. H. (2017). GIS-based technic for roadside-slope stability assessment an bivariate approach for A1 East-West highway, North Algeria. Mining Science, 24.

      [19] Glaçon, J. (1967). Recherches sur la géologie et les gîtes métallifères du Tell sétifien (Algérie). Service géologique de l'Algérie.

      [20] Obert, D. (1981). Etude géologique des Babors orientaux (Doctoral dissertation).

      [21] Trinh, V. N., Tang, A. M., Cui, Y. J., Canou, J., Dupla, J. C., Calon, N., ... & Schoen, O. (2011). Caractérisation des matériaux constitutifs de plate-forme ferroviaire ancienne. Revue française de Géotechnique, (134-135), 65-74.

      [22] Moore, D. M., & Reynolds, R. C. (1989). X-ray Diffraction and the Identification and Analysis of Clay Minerals (Vol. 378). Oxford: Oxford university press.

      [23] Cook H/E /, Johnson, P.D., Matti, J.C. and Zemmels, I., (1975). Methods of sample preparation and x-ray diffraction analysis in x-ray mineralogy laboratory, In: Kaneps A.G. et al. (eds), Init. Repts DSDP XXVIII, Print. Office, Wachington DC, 997-1007.

      [24] Boski, T., Pessoa, J., Pedro, P., Thorez, J., Dias, J., Hall, I.R., (1998). Factors governing abundance of hydrolysable amino acids in the sediments from the NW European Continental margin (47-50°N). Prog. Oceanogr.42, 145-164.

      [25] Madejova, J., & Komadel, P. (2001). Baseline studies of the clay minerals society source clays: infrared methods. Clays and clay minerals, 49(5), 410-432.

      [26] Russell, J.D. and Fraser, A.R. (1996) Infrared methods. pp. 11 – 67 in: Clay Mineralogy: Spectroscopic and chemical determinative methods. (M.J. Wilson, editor). Chapman & Hall, London.

      [27] Kylander, M. E., Ampel, L., Wohlfarth, B., & Veres, D. (2011). High-resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: new insights from chemical proxies. Journal of Quaternary Science, 26(1), 109-117.

      [28] ASTM Committee D-18 on Soil and Rock. (2011). Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM International.




Article ID: 21517
DOI: 10.14419/ijet.v7i4.21517

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.