Temperature analysis of ZnO/p-Si heterojunction using thermionic emission model

  • Authors

    • H. Hasim
    • S. M. Sultan
    • A. Mohamad
    https://doi.org/10.14419/ijet.v7i4.21533
  • Abstract

    Two ZnO/p-Si heterojunction diode structures are modeled based on thermionic emission in numerical computation environment, and their current-voltage characteristics were validated in Spice with 500 Ω and 5 kΩ load resistance. Both structures are differentiated based on thickness, metal size, and doping concentration. Parameters extracted such as barrier height, ideality factor, activation energy, series resistance, and shunt resistance are studied towards temperature-dependent study from 300 K to 673 K. Structure 1 proved to be exhibiting lower barrier height , series resistance and shunt resistance while structure 2 has lower ideality factor, activation energy, and turn on voltage. Modeling the ideality factor of structure 2 predicts a value of 0.25 at 673 K. Meanwhile, the turn on voltage of structure 2 is shown to achieve 0.8 V at room temperature. Barrier heights for structure 1 are reported to increase from 0.68 eV to 1.17 eV when temperature varies from 300 K to 673 K but series resistance and shunt resistance decreases with temperature.

  • References

    1. [1] Ya. Ya. Kudryk, V. V. Shynkarenko1, V. S. Slipokurov, R. I. Bigun, and R. Ya. Kudryk, Determination of the Schottky barrier height in diodes based on Au–TiB2–n-SiC 6H from the current-voltage and capacitance-voltage characteristics, Semiconductor Physics, Quantum Electronics & Optoelectronics 17 (2014) 398–402. https://doi.org/10.15407/spqeo17.04.398.

      [2] Sofiienko. Andrii, Degoda. Volodymyr, Ponce-Marquez. David. M and Johansen. Geir. A, Evaluation of monocrystalline ZnSe as a high-temperature radiation detector, in 11th European Conference on Non-Destructive Testing (ECNDT 2014) (Prague, Czech Republic, 2014).

      [3] Alvi. N. H, Riaz. M, Tzamalis. G, Nur. O and Willander. M, Junction temperature in n-ZnO Nano rods/ (p-4H–SiC, p-GaN, and p-Si) heterojunction light emitting diodes, Solid-State Electronics 54(2010) 536–540. https://doi.org/10.1016/j.sse.2010.01.020.

      [4] Badran. R. I, Umar. Ahmad, Al-Heniti. S, Al-Hajry. A and Al-Harbi. T, Synthesis and characterization of zinc oxide nanorods on silicon for the fabrication of p-Si/n-ZnO heterojunction diode, Journal of Alloys and Compounds 508 (2010), 375–379. https://doi.org/10.1016/j.jallcom.2010.08.048.

      [5] Chirakkara. Saraswathi and Krupanidhi. S. B, Study of n-ZnO/p-Si (100) thin film heterojunctions by pulsed laser deposition without buffer layer, Thin Solid Films 520 (2012), 5894–5899. https://doi.org/10.1016/j.tsf.2012.05.003.

      [6] Sharma. Shashikant, and Periasamy. C, A study on the electrical characteristic of n-ZnO/p-Si heterojunction diode prepared by vacuum coating technique, Superlattices and Microstructures 73(2014), 12–21. https://doi.org/10.1016/j.spmi.2014.05.011.

      [7] Masaud. T M Ben, Jaberansary. E, Sultan. S M, Clark. O, Sharp. T, Gunn. R, Bagnall. D M and Chong. H M H, Compact Fabry-Perot electro-optic switch based on n-ZnO/p-Si heterojunction structure, IEEE International Conference on Nanotechnology 1–3 (2012).

      [8] WH. Khoo and SM. Sultan, A study on the gas sensing effect on current-voltage characteristics of ZnO nanostructures, International Conference on Semiconductor Electronics (ICSE2014), 221–224 (2014).

      [9] SM. Sultan, K. Sun, MRR. De. Planque, P. Ashburn, and HMH. Chong, Top-down fabricated ZnO nanowire transistors for application in biosensors, 2012 Proceedings of the European Solid-State Device Research Conference (ESSDERC) 137–140 (2012).

      [10] Somvanshi. Divya and Jit. S, Analysis of Temperature-Dependent Electrical Characteristics of n-ZnO Nanowires (NWs)/p-Si Heterojunction Diodes, IEEE Transactions on Nanotechnology 13(2014), 62–69. https://doi.org/10.1109/TNANO.2013.2290553.

      [11] Pietruszka. R, Luka. G, Witkowski. B. S, Kopalko. K, Zielony. E, Bieganski. P, Placzek-popko. E, and Godlewski.M , Electrical and photovoltaic properties of ZnO/Si heterostructures with ZnO films grown by atomic layer deposition, Thin Solid Films 563(2014), 28–31. https://doi.org/10.1016/j.tsf.2013.10.110.

      [12] Yakuphanoglu. Fahrettin, Caglar. Yasemin, Caglar. Mujdat, and Ilican. Saliha, ZnO/p-Si heterojunction photodiode by sol–gel deposition of nanostructure n-ZnO film on p-Si substrate, Materials Science in Semiconductor Processing 13(2010), 137–140. https://doi.org/10.1016/j.mssp.2010.05.005.

      [13] He. Guan-ru, Lin. Yow-jon, Chang. Hsing-cheng and Chen. Ya-hui, Effects of interface modification by H2O2 treatment on the electrical properties of n-type ZnO/p-type Si diodes, Thin Solid Films 525(2012), 154–157. https://doi.org/10.1016/j.tsf.2012.10.056.

      [14] Schmitsdorf. R.F., Kampen. T.U.,M¨onch.W. , Explanation of the linear correlation between barrier heights and ideality factors of real metal-semiconductor contacts by laterally nonuniform Schottky barriers, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures 15(1997), 1221–1226. https://doi.org/10.1116/1.589442.

      [15] Aksoy. Seval and Caglar. Yasemin, Effect of ambient temperature on electrical properties of nanostructure n-ZnO/p-Si heterojunction diode, Superlattices and Microstructures 51(2012), 613–625. https://doi.org/10.1016/j.spmi.2012.02.018.

      [16] Klason. P, Rahman. M. M, Hu. Q, Nur. O, Turan. R and Willander. M, Fabrication and characterization of p-Si/n-ZnO heterostructured junctions, Microelectronics Journal 40(2009), 706–710. https://doi.org/10.1016/j.mejo.2008.07.070.

  • Downloads

  • How to Cite

    Hasim, H., Sultan, S. M., & Mohamad, A. (2018). Temperature analysis of ZnO/p-Si heterojunction using thermionic emission model. International Journal of Engineering & Technology, 7(4), 3022-3025. https://doi.org/10.14419/ijet.v7i4.21533

    Received date: 2018-11-25

    Accepted date: 2018-11-25