Synthesis of the switching control law for a quadrotor autopilot
-
https://doi.org/10.14419/ijet.v7i4.21541 -
Abstract
The paper deals with the problem of synthesizing the time-optimal control law by the angular coordinates of an unmanned aerial vehicle with stabilization in the pitch and roll directions. The full mathematical model of the unmanned aerial vehicle is reduced to a system of the first-order differential equations, based on which the optimal control law is constructed. Control action in each plane depends only on the measured coordinates and is calculated in real time. It is believed that the dynamic model, described by a system of differential equations, contains complex roots, which indicate the oscillatory response of the controlled object to the control action. Some properties of the switching line and switching control are also considered in the paper. Some results of simulating the dynamics of the object under examination with a synthesized control law are presented.
-
References
[1] Pounds, P., Hynes, P., Mahony, R., & Roberts, J. (2002, November), “Design of a Four-Rotor Aerial Robotâ€, Proceedings of the Australasian Conference on Robotics and Automation,Auckland,New Zealand, 2002, (Vol. 1, pp. 145 – 150), available online: https://www.researchgate.net/publication/229001549_Design_of_a_four-rotor_aerial_robot, last visit: 26.07.2018.
[2] Castillo, P., Dzul, A., & Lozano, R., (2004), “Real-time stabilization and tracking of a four-rotor mini-rotorcraftâ€, Proceedings of the IEEE Transactions on Control Systems Technology, Vol. 12, No. 4, pp. 510 – 516, available online: https://ieeexplore.ieee.org/document/1308180/, last visit: 26.07.2018.
[3] Bouabdallah, S., & Siegwart, R., (2005, April), “Backstepping and Sliding-mode Techniques Applied to an Indoor Micro Quadrotorâ€, Proceedings of the International Conference on Robotics and Automation, 2005 International Conference of (Vol.1, pp. 2259 – 2264) IEEE, available online: https://ieeexplore.ieee.org/document/1570447/, last visit: 26.07.2018.
[4] Babaei, R., & Ehyaei, A.F., (2015), “Robust Backstepping Control of a Quadrotor UAV Using Extended Kalman Bucy Filterâ€, International Journal of Multidisciplinary Engineering in Current Research, 5(16), 2276-2291, available online: https://en.civilica.com/Paper-JR_IJMEC-JR_IJMEC-5-16_006=Robust-Backstepping-Control-of-a-Quadrotor-UAV-Using-Extended-Kalman-Bucy-Filter.html, last visit: 26.07.2018.
[5] Larin, V.B., & Tunik, A.A. (2016), “Synthesis of the Quad-Rotor Flight Control Systemâ€, Proceedings of the International Conference Methods and Systems of Navigation and Motion Control (MSNMC). 2016 International Conference of (Vol.1, pp.12-17) IEEE, available online: https://ieeexplore.ieee.org/abstract/document/7783095/, last visit: 26.07.2018.
[6] Noura, H., Susilo, T.B., & Wahyudie, A., (2013), “Robust PID-controller for quad-rotorsâ€, Journal of Unmanned System Technology, 1: 14 - 19, available online: https://www.researchgate.net/publication/272550330_Robust_PID_Controller_for_Quadrotors, last visit: 26.07.2018.
[7] Sen Y & Zhong-Sheng W (2017), “Quad-Rotor UAV Control Method Based on PID Control Lawâ€, Proceedings of the International Conference on Computer Network, Electronic and Automation (ICCNEA),Xi'an,China, 23 - 25 September 2017, pp. 418 - 421, available online: https://ieeexplore.ieee.org/document/8128600/, last visit: 26.07.2018.
[8] Sushchenko OA & Goncharenko VA (2016), “Design of Robust Systems for Stabilization of Unmanned Aerial Vehicle Equipmentâ€, International Journal of Aerospace Engineering, Article ID 6054081, p. 1 – 10, available online: https://doi.org/10.1155/2016/6054081.
[9] Lu, H., Liu, L., Tian, B., et al (2018), “Multivariable Finite Time Attitude Control for Quadrotor UAV. Theory and Experimentationâ€, IEEE Transactions on Industrial Electronics, Vol. 65, No. 3, pp. 2567 – 2577, available online: https://ieeexplore.ieee.org/document/8010301/, last visit: 26.07.2018.
[10] Athans M & Falb PL, Optimal Control. An Introduction to the Theory and Its Applications, McGraw-Hill Book Company, (1963), pp: 451 – 589.
[11] Kucherov, D.P., (2005), “Synthesis of an adaptive controller for fixed-time control of a spinning body under the presence of bounded noiseâ€, Journal of automation and information science, 37(1), 29-38, available online: http://www.dl.begellhouse.com/ru/journals/2b6239406278e43e,5aa280c9630a07e4,55b990ef5fa0b065.html, last visit: 26.07.2018.
[12] Goldstein H, Classical Mechanics, Addison-Wesley Publishing Company Inc. Reading, Mass, 3ed, (2001), pp: 184 – 232.
-
Downloads
-
How to Cite
Kucherov, D., Sushchenko, O., Rasstrygin, A., Zhdanov, S., & Kozub, A. (2018). Synthesis of the switching control law for a quadrotor autopilot. International Journal of Engineering & Technology, 7(4), 3065-3069. https://doi.org/10.14419/ijet.v7i4.21541Received date: 2018-11-25
Accepted date: 2018-11-25