Mechanical and Thermal Properties of Sayong Clay/HDPE Composites
-
2018-11-27 https://doi.org/10.14419/ijet.v7i4.18.21825 -
HDPE, Sayong clay, mechanical testing, thermal analysis (DSC). -
Abstract
The present study showed the effect of Sayong clay as filler on the mechanical and thermal properties of high-density polyethylene (HDPE). Different concentrations of clay (1 wt%, 3 wt% and 5 wt%) were introduced which are reinforced to HDPE composites and was prepared by melt mixing using a compounder system. The prepared composites then undergo mechanical testing and thermal study to evaluate its effectiveness after added clay. The effect of Sayong clay addition was different for each clay content and the highest tensile and flexural strength were observed for HDPE/clay composites with 5 wt% of clay at 20.98 MPa and 14.73 MPa respectively. The results showed that Sayong clay/HDPE composites with 5 wt% of clay have considerable effect upon increasing the strength properties of HDPE/clay composites. In addition, the result revealed that the accumulated clay particles that arise with addition of 3wt% of clay caused the decreased in impact strength. To study the melting point and crystallization behaviour of clay reinforced with HDPE, DSC were conducted on the samples at the temperature of 50°C to 180 °C. The result indicated that the higher the melting point of the mixture was achieved by increasing content of Sayong clay. The crystallization behaviour of HDPE is affected with the addition of Sayong clay in which make the composite easily become crystal form even at high temperature. As such, Sayong clay is can act as reinforcing filler and produced polymer composites with improved strength properties.
Â
Â
-
References
[1] Shin, Y. K., Lee, W. S., Yoo, M. J., & Kim, E. S. (2013). Effect of BN filler on thermal properties of HDPE matrix composites. Ceramics International 39 (SUPPL.1), S569–S573.
[2] Grigoriadou, I., Paraskevopoulos, K. M., Karavasili, M., Karagiannis, G., Vasileiou, A., & Bikiaris, D. (2013). HDPE/Cu-nanofiber nanocomposites with enhanced mechanical and UV stability properties. Composites Part B: Engineering 55, 407–420.
[3] Dikobe, D. G., & Luyt, A. S. (2017). Thermal and mechanical properties of PP/HDPE/wood powder and MAPP/HDPE/wood powder polymer blend composites. Thermochimica Acta 654, 40–50.
[4] Chrissafis, K., Paraskevopoulos, K. M., Pavlidou, E., & Bikiaris, D. (2009). Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles. Thermochimica Acta 485, 65–71.
[5] Gopakumar, T. G., Lee, J. A., Kontopoulou, M., & Parent, J. S. (2002). Influence of clay exfoliation on the physical properties of montmorillonite / polyethylene composites. Polymer 43, 5483–5491.
[6] Asgari, M., Abouelmagd, A., & Sundararaj, U. (2017). Silane functionalization of sodium montmorillonite nanoclay and Its effect on rheological and mechanical properties of HDPE/clay nanocomposites. Applied Clay Science 146, 439–448.
[7] Barbosa, R., Alves, T. S., Araújo, E. M., Mélo, T. J. A., Camino, G., Fina, A., & Ito, E. N. (2014). Flammability and morphology of HDPE/clay nanocomposites. Journal of Thermal Analysis and Calorimetry 115(1), 627-634.
[8] Zhang, M., & Sundararaj, U. (2006). Thermal, Rheological, and Mechanical Behaviors of LLDPE/PEMA/Clay Nanocomposites: Effect of Interaction between Polymer, Compatibilizer, and Nanofiller. Macromol. Mater. Eng. 291, 697-706.
[9] Xidas, P. I., & Triantafyllidis, K. S. (2010). Effect of the type of alkylammonium ion clay modifier on the structure and thermal/mechanical properties of glassy and rubbery epoxy-clay nanocomposites. European Polymer Journal 46(3), 404-417.
[10] Pons C. H., C. de la Calle and J. L. Martin de Vidales. (1995). Quantification Curves for XRD Analysis of Mixed-Layer 14â„«/10â„« Clay Minerals. Clays and Clay Minerals 43, 246-254
[11] Minkova, L., Peneva, Y., Tashev, E., Filippi, S., Pracella, M., & Magagnini, P. (2009). Thermal properties and microhardness of HDPE/clay nanocomposites compatibilized by different functionalized polyethylenes. Polymer Testing 28(5), 528-533.
[12] Rahim S. N. A., Sulaiman A., Hamzah F., Hamid K. H. K., Rodhi M. N. M., Musa M., & Edama N. A. (2013). Enzymes Encapsulation within Calcium Alginate-clay Beads: Characterization and Application for Cassava Slurry Saccharification. Procedia Engineering 68, 411-417.
[13] Gao, H., Song, Y., Wang, Q., Han, Z., & Zhang, M. (2008). Rheological and mechanical properties of wood fiber-PP/PE blend composites. Journal of Forestry Research 19(4), 315-318.
[14] Singh S., Deepak D., Aggarwal L., & Gupta V. K. (2014). Tensile and Flexural Behavior of Hemp Fiber Reinforced Virgin-recycled HDPE Matrix Composites. Procedia Materials Science 6, 1696-1702.
[15] Krishnan A. K., George T. S., Anjana R., Joseph N. and George K. E. (2013). Effect of modified kaolin clays on the mechanical properties of polypropylene/polystyrene blends. J. Appl. Polym. Sci. 127, 1409-1415.
[16] Mitsunaga M., Ito Y., Ray S. S., Okamoto M. and Hironaka K. (2003). Intercalated Polycarbonate/Clay Nanocomposites: Nanostructure Control and Foam Processing. Macromol. Mater. Eng. 288, 543-548.
[17] Ying Z., Xianggao L., Bin C., Fei C., & Jing F. (2015). Highly exfoliated epoxy/clay nanocomposites: Mechanism of exfoliation and thermal/mechanical properties. Composite Structures 132, 44-49.
[18] Albano C., Perera R., Cataño L., Karam A., & González, G. (2011). Prediction of mechanical properties of composites of HDPE/HA/EAA. Journal of the Mechanical Behavior of Biomedical Materials 4(3), 467-475.
[19] Busigin C., Lahtinen R., Martinez G. M., Thomas G., & Woodhams R. T. (1984). The properties of micaâ€filled polypropylenes. Polymer Engineering & Science 24(3), 169-174.
[20] Kumaga S. I. (1988). Aminimide-cured epoxy resins as surface modifiers for mica flakes in particle-reinforced thermoplastics. Journal of Materials Science 23(2), 535-540.
[21] Valek, R. A., Hell, J. (2011). Impact properties of polymeric nanocomposites with different shape of nanoparticles. NANOCON, 21- 23.
[22] Bashar, M. P. (2014). Effect of Nanocomposite Structures on Fracture Behavior of Epoxy-Clay Nanocomposites Prepared by Different Dispersion Methods. Journal of Nanomaterials, 1-12.
[23] Rashidi, A. R., Muhammad, A., Roslan, A. Morphology-Property relationship of high density Polyethylene/Hevea Brasiliensis Leaves/Imperata cylindrica hybrid composite: Impact strength. AIP Conference Proceedings 1885, 020229 (2017)
[24] George, T. S., K, A. K., (2013). Studies on nano kaolin clay Reinforced PS-HDPE nanocomposites. Indian Journal of Advances in Chemical Science 1(4), 201-206.
[25] Agubra, V. A., Owuor, P.S., and Hosur, M.V. (2013). Influence of nanoclay dispersion methods on the mechanical behavior of E-glass/epoxy nanocomposites. Nanomaterials 3(3), 550-563
[26] Kusmono, M. a. (2013). Preparation and Properties of Clay-Reinforced Epoxy Nanocomposites. International Journal of Polymer Science 1-7.
[27] Tanasa, F., Zanoaga, M., Darie, R. (2014). Evaluation of stress-strain properties of some new polymer-clay nanocomposites for aerospace and defence applications. International conference of scientific paper AFASES.
[28] Chen, J., & Yan, N. (2013). Composites: Part B Crystallization behavior of organo-nanoclay treated and untreated kraftfiber–HDPE composites. Composites Part B 54,180–187.
[29] Anne Marie Helmenstine. (2017). Specific Heat Capacity Definition. thought.Co. Retrieved from https://www.thoughtco.com/definition-of-specific-heat-capacity-605672
[30] Tanniru, M., Yuan, Q., & Misra, R. D. K. (2006). On significant retention of impact strength in clay reinforced high-density polethylene (HDPE). Nanocomposites 47, 2133–2146.
-
Downloads
-
How to Cite
Ramli Rashidi, A., Muhammad, A., Nur Ain Sanusi, S., Hajar Anaziah Muhamad, S., & Muhammad Hafiz Shah Buddin, M. (2018). Mechanical and Thermal Properties of Sayong Clay/HDPE Composites. International Journal of Engineering & Technology, 7(4.18), 75-79. https://doi.org/10.14419/ijet.v7i4.18.21825Received date: 2018-11-27
Accepted date: 2018-11-27
Published date: 2018-11-27