Nanocarnation-like Nickel Oxide Thin Film: Structural and Optical Properties

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Herein, the structural and optical properties of highly porous nanocarnation-like nickel oxide (NiO) thin film in possibility of sensing applications were reported. The highly porous nanocarnation-like NiO was grown on indium tin oxide (ITO) glass substrates by using sonicated sol-gel immersion process. The grown film was characterized in details to examine the structural and optical properties using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Raman spectroscopy, and ultraviolet–visible–near infrared (UV-vis-NIR) spectroscopy, respectively. The XRD pattern reveals that the grown nanocarnation-like NiO film has crystalline NiO with a cubic structure. The UV-vis-NIR spectrum demonstrates that the average transmittance value of the sample in the visible region is approximately 48 % transmission. The results showed that, in view of highly porous nanocarnation-like NiO structure exhibited a great influence on its possibility for sensing applications.

     

     


  • Keywords


    Nickel oxide (NiO); Thin Film; sol-gel; Structural Properties; Optical Properties

  • References


      [1] Z. Qu, U. Ahmad, S. E. Mehdi, A. Aziz, X. Lingna, G. Yingang, A. I. Ahmed, K. Rajesh & S. Baskoutas (2018), Fabrication and characterization of highly sensitive and selective sensors based on porous NiO nanodisks. Sensors and Actuators B: Chemical 259, 604-615.

      [2] D. Ahirwar, M. Bano, I. Khan, M. U.-D. Sheikh, M. Thomas & F. Khan (2018), Fabrication of hierarchically mesoporous NiO nanostructures and their role in heterogeneous photocatalysis and sensing activity. Journal of Materials Science: Materials in Electronics 29, 5768-5781.

      [3] S. Akinkuade, B. Mwankemwa, J. Nel & W. Meyer (2018), Structural, optical and electrical characteristics of nickel oxide thin films synthesised through chemical processing method. Physica B: Condensed Matter 535, 24-28.

      [4] S. Leonardi (2017), Two-Dimensional Zinc Oxide Nanostructures for Gas Sensor Applications. Chemosensors 5, 17, 28.

      [5] Y. Lu, Y. Ma, S. Ma & S. Yan (2017), Hierarchical Heterostructure of Porous NiO Nanosheets on Flower-like ZnO Assembled by Hexagonal Nanorods for High-performance Gas Sensor. Ceramics International 43, 7508-7515.

      [6] R. Miao, W. Zeng & Q. Gao (2017), Hydrothermal synthesis of novel NiO nanoflowers assisted with CTAB and SDS respectively and their gas-sensing properties. Materials Letters 186, 175-177.

      [7] M. M. Gomaa, G. RezaYazdi, M. Rodner, G. Greczynski, M. Boshta, M. B. S. Osman, V. Khranovskyy, J. Eriksson & R. Yakimova (2018), Exploring NiO nanosize structures for ammonia sensing. Journal of Materials Science: Materials in Electronics 29, 11870-11877.

      [8] D. Li, Y. Li, F. Li, J. Zhang, X. Zhu, S. Wen & S. Ruan (2015), Humidity sensing properties of MoO3-NiO nanocomposite materials. Ceramics International 41, 4348-4353.

      [9] P. Pascariu, A. Airinei, N. Olaru, I. Petrila, V. Nica, L. Sacarescu, F. Tudorache (2016), Microstructure, electrical and humidity sensor properties of electrospun NiO–SnO2 nanofibers. Sensors and Actuators B: Chemical 222, 1024-1031.

      [10] M. Hübner, C. E. Simion, A. Tomescu-Stănoiu, S. Pokhrel, N. Bârsan & U. Weimar (2011), Influence of humidity on CO sensing with p-type CuO thick film gas sensors. Sensors and Actuators B: Chemical 153, 347-353.

      [11] L. G. Teoh & K.-D. Li (2012), Synthesis and Characterization of NiO Nanoparticles by Sol-Gel Method. Materials Transactions 53, 2135-2140.

      [12] H. Gao, D. Wei, P. Lin, C. Liu, P. Sun, K. Shimanoe, N. Yamazoe & G. Lu (2017), The design of excellent xylene gas sensor using Sn-doped NiO hierarchical nanostructure. Sensors and Actuators B: Chemical 253, 1152-1162.

      [13] H. Jiang, T. Zhao, C. Li & J. Ma (2011), Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. Journal of Materials Chemistry 21, 11, 3818-3823.

      [14] D. T. Dam, X. Wang & J.-M. Lee (2013), Mesoporous ITO/NiO with a core/shell structure for supercapacitors. Nano Energy, 2, 6, 1303-1313.

      [15] P. Bose, S. Ghosh, S. Basak & M. K. Naskar (2016), A facile synthesis of mesoporous NiO nanosheets and their application in CO oxidation. Journal of Asian Ceramic Societies, 4, 1, 1-5.

      [16] S. Deabate, F. Fourgeot & F. Henn (2000), X-ray diffraction and micro-Raman spectroscopy analysis of new nickel hydroxide obtained by electrodialysis. Journal of Power Sources, 87, 1, 125-136.

      [17] N. P. Kiran, M. P. Deshpande, C. Krishna, R. Piyush, S. Vasant, P. Swati & S. H. Chaki (2017), Synthesis, structural and photoluminescence properties of nano-crystalline Cu doped NiO. Materials Research Express 4, 10, 105027.

      [18] P. Ravikumar, B. Kisan & A. Perumal (2015), Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles. AIP Advances, 5, 8, 087116.

      [19] S. Liu, J. Jia, J. Wang, S. Liu, X. Wang, H. Song and X. Hu (2012), Synthesis of Fe-doped NiO nanofibers using electrospinning method and their ferromagnetic properties. Journal of Magnetism and Magnetic Materials 324, 13, 2070-2074.

      [20] F. T. Thema, E. Manikandan, A. Gurib-Fakim & M. Maaza (2016), Single phase Bunsenite NiO nanoparticles green synthesis by Agathosma betulina natural extract. Journal of Alloys and Compounds 657, 655-661.

      [21] M. Ben Amor, A. Boukhachem, A. Labidi, K. Boubaker, and M. Amlouk (2017), Physical investigations on Cd doped NiO thin films along with ethanol sensing at relatively low temperature. Journal of Alloys and Compounds 693, 490-499.


 

View

Download

Article ID: 21831
 
DOI: 10.14419/ijet.v7i4.18.21831




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.