Alpha Lactose Monohydrate Morphology: Molecular Modelling and Experimental Approach

  • Authors

    • Zulfahmi Lukman
    • Nornizar Anuar
    • Noor Fitrah Abu Bakar
    • Norazah Abdul Rahman
    2018-11-27
    https://doi.org/10.14419/ijet.v7i4.18.21832
  • hydrogen bond, lattice energy molecular modelling, surface chemistry.
  • Abstract

    This study is conducted to investigate morphologies ofalpha lactose monohydrate (αLM) grown in polyethylene glycol 300 (PEG 300) solution and vacuum condition via molecular modelling techniques. Surface chemistry of predicted αLM is described. The molecules of αLM in its unit lattice were optimized prior to morphological prediction of attachment energy method and the suitable potential function was determined. The predicted lattice energy of αLM was in excellent agreement with the experimental lattice energy with percent errors of 3.9%. The morphology of αLM is predicted to be hexagonal in shape, similar to crystal morphology of αLM grown in PEG 300 solutions. It was found that the lattice energy and of αLM was dominated by the weak van der Waals force.

     

     

  • References

    1. [1] N. Rasenack and B. W. Müller, "Ibuprofen crystals with optimized properties", International Journal of Pharmacy, Vol.45, (2002), pp.9–24.

      [2] N. Rasenack & B. W. Muller, "Properties of ibuprofen crystallized under various conditions: a comparative study", Drug Development and Industrial Pharmacy, Vol.28, No.9, (2002), pp.1077-1089.

      [3] H. Cano, N. Gabas & J. P. Canselier, “Experimental study on the ibuprofen crystal growth morphology in solution,†Journal of Crystal Growth, Vol.224, No.3, (2001), pp.335–341.

      [4] A. S. Myerson, Molecular Modeling Applications in Crystallization, Cambridge University Press, (1999). pp:106-160.

      [5] A. J. Cruz Cabeza, G. M. Day, W. D. S. Motherwell & W. Jones, “Prediction and observation of isostructurality induced by solvent incorporation in multicomponent crystals,†Journal of American Chemical Society, Vol.128, No.45, (2006), pp.4466–14467.

      [6] N. Issa, P. G. Karamertzanis, G. W. A. Welch, and S. L. Price, “Can the formation of pharmaceutical cocrystals be computationally predicted? i. comparison of lattice energies,†Crystal Growth & Design, Vol.9, No.1, (2009), pp.442–453.

      [7] P. G. Karamertzanis, A. V Kazantsev, N. Issa, G. W. A. Welch, C. S. Adjiman, C. C. Pantelides, and S. L. Price, “Can the formation of pharmaceutical cocrystals be computationally predicted? 2. crystal structure prediction,†Journal of Chemical Theory & Computation, Vol.5, No.5, (2009), pp.1432–1448.

      [8] A. Lemmerer, C. Esterhuysen, and J. Bernstein, “Synthesis, characterization, and molecular modeling of a pharmaceutical co-crystal: (2-chloro-4-nitrobenzoic acid):(nicotinamide).,†Journal of Pharmaceutical Science, Vol.99, No.9, (2010), pp.4054–4071.

      [9] O. Almarsson and M. J. Zaworotko, “Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines?,†Chemical Communications, No.17 (2004), pp.1889–1896.

      [10] J. Y. Sabiruddin Mirza, Inna Miroshnyk, Jyrki Heinämäki, “Co-crystals: an emerging approach for enhancing properties of pharmaceutical solids,†Dosis, Vol.24, (2008), pp.90–96.

      [11] J. Chen, B. Sarma, J. M. Evans, and A. S. Myerson, “Pharmaceutical crystallization: published as part of the Crystal Growth & Design 10th anniversary perspective,†Crystal Growth & Design., Vol.11, (2011), pp.887–895.

      [12] S. Garnier, S. Petit, and G. Coquerel, “Influence of supersaturation and structurally related additives on the crystal growth of α-lactose monohydrate,†Journal of Crystal Growth, Vol.234, No.1, (2002), pp.207–219.

      [13] J. J. B. Machado, J. A. Coutinho, and E. A. Macedo, "Solid–liquid equilibrium of α-lactose in ethanol/water", Fluid Phase Equilibria, Vol.173, (2000), pp.121-134.

      [14] P. F. Fox, T. Uniacke-Lowe, P. L. H. McSweeney, and J. A. O’Mahony, Dairy Chemistry and Biochemistry. Springer International Publishing, (2015), pp:27-30.

      [15] N. Board, The Complete Technology Book on Dairy & Poultry Industries With Farming and Processing, (2012), pp:344-345.

      [16] B. K. Simpson, L. M. L. Nollet, F. Toldrá, S. Benjakul, G. Paliyath, and Y. H. Hui, Food Biochemistry and Food Processing. Wiley, (2012). pp:444-445.

      [17] S. Garnier, S. Petit, and G. Coquerel, “Dehydration mechanism and crystallisation behaviour of lactose,†Journal of Thermal Analysis, Vol. 68 (2002), pp.489–502.

      [18] T. D. Dincer, G. M. Parkinson, A. L. Rohl, and M. I. Ogden, “Crystallisation of α-lactose monohydrate from dimethyl sulfoxide (DMSO) solutions : influence of β-lactose,†Journal of Crystal Growth, Vol.205, (1999), pp.368–374.

      [19] P. MacFhionnghaile, V. Svoboda, J. McGinty, A. Nordon, and J. Sefcik, “Crystallization diagram for antisolvent crystallization of lactose: using design of experiments to investigate continuous mixinginduced supersaturation,†Crystal Growth & Design, Vol.17, No.5, (2017), pp. 2611–2621.

      [20] P. Parimaladevi and K. Srinivasan, “Influence of supersaturation level on the morphology of a-lactose monohydrate crystals,†International Dairy Journal, Vol.39, (2014), pp.301–311.

      [21] X. Liu, E. Boek, W. Briels, and P. Bennema, “Analysis of morphology of crystals based on identification of interfacial structure,†Journal of Chemical Physic, Vol.103, No.3747, (1995), pp.3747-3754.

      [22] C. S. Towler, R. J. Davey, R. W. Lancaster, and C. J. Price, “Impact of molecular speciation on crystal nucleation in polymorphic systems: the conundrum of gamma glycine and molecular ‘self poisoning’.†Journal of American Chemical Society, Vol.126, No.41, (2004), pp.13347–13353.

      [23] C. Stoica, P. Tinnemans, H. Meekes, W. J. P. van Enckevort, and E. Vlieg, “Rough growth behavior of a polar steroid crystal: a case of polymorphic self-poisoning?,†Crystal Growth & Design., Vol.6, No.6, (2006), pp.1311–1317.

      [24] I. Weissbuch, L. Leiserowitz, and M. Lahav, “Self-poisoning at {011} faces of α-resorcinol crystals may explain its unidirectional growth in the vapor phase: a molecular modeling study,†Crystal Growth & Design, Vol.6, No.3, (2006), pp.625–628.

      [25] S. L. Raghavan, R. I. Ristic, D. B. Sheen, and J. N. Sherwood, “Morphology of crystals of a-lactose hydrate grown from aqueous solution,†Journal of Physical Chemistry B, Vol.104, (2000), pp.12256–12262.

      [26] D. C. Fries, S. T. Rao, and M. Sundaralingam, “Structural chemistry of carbohydrates. iii. crystal and molecular structure of4-o-β-d-galactopyranosyl-α-d-glucopyranose monohydrate (α-lactose monohydrate),†Acta Crystallographica Section B, Vol.B27, (1971), pp.994-1005.

      [27] J. H. Smith, S. E. Dann, M. R. J. Elsegood, S. H. Dale, and C. G. Blatchford, “α-lactose monohydrate: a redetermination at 150 K,†Acta Crystallographica Section E, Vol.61, No.8, (2005), pp.2499-2501.

      [28] J. C. Givand, R. W. Rousseau, and P. J. Ludovice, “Characterization of l-isoleucine crystal morphology from molecular modeling,†Journal of Crystal Growth, Vol.194, No.2, (1998), pp.228–238.

      [29] V. Bisker-Leib and M. F. Doherty, “Modeling the crystal shape of polar organic materials : prediction of urea crystals grown from polar and nonpolar solvents,†Crystal Growth & Design, Vol.1, No.6, (2001), pp.455–461.

      [30] D. H. Dressler, I. Hod, and Y. Mastai, “Stabilization of α-l-glutamic acid on chiral thin films—a theoretical and experimental study,†Journal of Crystal Growth, Vol.310, (2008), pp.1718–1724.

      [31] S. K. Poornachary, P. S. Chow, and R. B. H. Tan, “Impurity effects on the growth of molecular crystals: experiments and modeling,†Advanced Powder Technology, Vol.19, (2008), pp.459–473.

      [32] S. K. Poornachary, P. S. Chow, and R. B. H. Tan, “Effect of solution speciation of impurities on α-glycine crystal habit: a molecular modeling study,†Journal of Crystal Growth, Vol.310, No.12, (2008). pp.3034–3041.

      [33] G. Clydesdale, K. J. Roberts, G. B. Telfer, and D. J. W. Grant, “Modeling the crystal morphology of α-lactose monohydrate,†Journal of Pharmaceutical Science, Vol.86, No.1, (1997), pp.135–141.

      [34] A. Paterson, “Lactose processing: from fundamental understanding to industrial application,†International Dairy Journal, Vol.67, (2017), pp.80–90.

      [35] A. Xun, T. Truong, and B. Bhandari, “Effect of Carbonation of supersaturated lactose solution on crystallisation behaviour of alpha-lactose monohydrate,†Food Biophysics, Vol.12, (2017), pp.52–59.

      [36] T. D. Dincer, M. I. Ogden, and G. M. Parkinson, “In situ investigation of growth rates and growth rate dispersion of a -lactose monohydrate crystals,†Journal of Crystal Growth, Vol.311, (2009), pp.1352–1358.

  • Downloads

  • How to Cite

    Lukman, Z., Anuar, N., Fitrah Abu Bakar, N., & Abdul Rahman, N. (2018). Alpha Lactose Monohydrate Morphology: Molecular Modelling and Experimental Approach. International Journal of Engineering & Technology, 7(4.18), 107-112. https://doi.org/10.14419/ijet.v7i4.18.21832

    Received date: 2018-11-27

    Accepted date: 2018-11-27

    Published date: 2018-11-27