Physical and Chemical Properties of 4 Years Petai Belalang (Leuca`ena leucocephala) Wood

  • Authors

    • Nor Yuziah Mohd Yunus
    • Wan Mohd Nazri Wan Abdul Rahman
    • Zulhilmi Razali
    2018-11-27
    https://doi.org/10.14419/ijet.v7i4.18.21929
  • Petai Belalang, Leucaena leucocephala, physical properties, chemical properties, tree portion
  • Abstract

    The physical and chemical properties are important factors that influence the workability of a material. The main objective of the study is to determine the physical and chemical properties of Petai Belalang (Leucaena leucocephala) with diameter at breast height ranging between 35cm to 41cm. Petai Belalang trees were cut into three height portions (bottom, middle and top). Samples for physical properties were taken from each height portion. Samples for chemical determination came from the bottom, middle and top portion of the trees. The highest specific gravity of Petai Belalang was found at the bottom portion, followed by middle and top portion. Percentage of moisture content increased from bottom to top portion. Tree portion affected the cold water and hot water soluble, alkali solubility, alcohol toluene soluble, ash content and lignin content.

     

     

  • References

    1. [1]. Bendsten, B. A. (1978). Properties of wood from improved and intensively managed trees. Forest Products Journal, 52(4), pp. 61-72.

      [2]. De Zeuuw, D. (1980). The Effect of Competition on Stand, Tree and Wood Growth and Structure in Subtropical Eucalyptus. Google Sholar, pp. 14.

      [3]. Hill, A. C. (2006). Wood Modification, first ed., John Wiley & Sons, USA.

      [4]. Hughes, C. E. (1997). Proposal to conserve the name Leucaena (Leguminosae) with a conserved type. Taxon, 46(2), pp. 355-356.

      [5]. Hughes, C. E. (1998). Leucaena: A Genetic Resource Handbook. Tropical Forestry Paper 37, Oxford Forestry Institue. University of Oxford Press. UK.

      [6]. Hughes, C. E. (1998). Monograph of Leucaena Benth. (Leguminosae: Mimosoideae). Systematic Botany Monographs, No. 55, pp. 1-242.

      [7]. Idrus, S. M. A. S. (2015). Effect of Diameter at Breast Height of Leucaena leucocephala on Bio Char Production in Tube Furnace Prolysis. Journal Teknologi Sains MARA, pp. 43-47.

      [8]. Jamaludin, K. (2006). Properties of Particleboard and Thermoplastic Board from Buluh Semantan (Gigantochloa scortechinii). Shah Alam: University Publication Centre (UPENA).

      [9]. Jenkins, B. M. (1995). On the properties of washed straw. Biomass and Bioenergy, 10(4), pp 177-200.

      [10]. Junaiza, A. Z. (2012). Chemical Properties of Juvenile Latex Timber Clone Rubberwood Trees. The Malaysian Journal of Analytical Science, Vol. 16 No. 3, pp. 228-234.

      [11]. Malaysian Timber Industry Board (MTIB) (2000). 100 Malaysian Timber. Third reprint, Malaysia Timber Industry Board, Kuala Lumpur, pp. 223-224.

      [12]. Maldas, D. C., & Kamdem, D. P. (1999). Wettability of extracted southern pine. Forest Products Journal, 20(1), pp. 43-52.

      [13]. Miller, J. H. (2015). A Field Duide for the Identification of Invasive Plants in Southern Forests. Forest Service Southern Research Station, pp. 119.

      [14]. Miller, R. B. (1999). Structure of Wood. Chapter 2. Wood Handbook-Wood as an engineering material. Gen. Tech. Rep. FPL-GTR-113. Madison, Wl: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, pp. 463.

      [15]. Route, G. R., Samantaray, S., & Das, P. (1990). Chromium, nickel and zinc tolerance in Leucaena leucocephala (K8). Silvae Genet, pp. 151-157.

      [16]. Sakinah, N. (2014). Physical and Chemical Properties of Kelempayan (Neolamarkia cadamba) wood. International Journal of Latest Research in Science and Technology Volume 3, pp. 215-219.

      [17]. Sheree, C. (2006). Wood formation from the base to the crown in Pinus radiata: gradients of trachied wall thickness, wood density, radial growth rate and gene expression. Plant Molecular Biology, 60, pp. 565-581.

      [18]. Taylor, A. M. (2002). Heartwood formation and natural durability. Wood and Fiber Science, 34, pp. 587-611.

      [19]. Tour, U., Wintwerhalter, K., & Fiecher, A. (1995). Enzymes of white-rot fungi involved in lignin degradation and ecological determinats for wood decay. J. Biotechnol., pp 1-17.

      [20]. Ucar, G. & Yillgor, N. (1995). Chemical and Technology Properties of 300 Years Waterlogged Wood, Holz als Roh- und Wekstoff, Vol. 53(2), pp. 129-132.

      [21]. Vietmeyer, N., Cotton, B., & Ruskin, F. R. (1977). Leucaena promising forage and tree crop for the tropics. U.S. National Academy of Science, pp. 80.

      [22]. Wan-Mohd-Nazri, WAR, (2009). Properties of Oriented Strand Board from Leucaena leucocephala Wood. Ph.D Thesis. Universiti Teknologi MARA.

      [23]. Zárate, P. S. (1987). Taxonomic identify of Leucaena leucocephala (Lam.) de Wit with a new combination Phytologia, pp. 304-306.

      [24]. Zárate, S. (1994). Revision of the genus Leucaena Benth. In Mexico. Revision on Leucaena at Biological Series Botanical, pp. 83-162.

  • Downloads

  • How to Cite

    Yuziah Mohd Yunus, N., Mohd Nazri Wan Abdul Rahman, W., & Razali, Z. (2018). Physical and Chemical Properties of 4 Years Petai Belalang (Leuca`ena leucocephala) Wood. International Journal of Engineering & Technology, 7(4.18), 252-255. https://doi.org/10.14419/ijet.v7i4.18.21929

    Received date: 2018-11-27

    Accepted date: 2018-11-27

    Published date: 2018-11-27