Nanocrystalline Cellulose Isolation from Pulverized Kenaf Core using Hydrothermal Treatment with Low Concentration of Oxalic Acid
-
2018-11-27 https://doi.org/10.14419/ijet.v7i4.18.21941 -
Pulverized kenaf core, Nanocrystalline cellulose, Hydrothermal, Oxalic Acid -
Abstract
Isolation of nanocrystalline celluloses (NCC) from pulverized kenaf core (PKC) particles using hydrothermal treatment with low concentration of oxalic acid hydrolysis was investigated in this study. Prior to hydrolysis treatment, PKC particles were pretreated using alkali (NaOH) and bleaching treatments to eliminate lignin and hemicellulose. Zeta potential and particles size analysis showed that the zeta potential value and the average size of NCC obtained is -31.6 mV and 182.55 nm respectively. The median diameter, d50 for the NCC suspension is 316.72 nm. A rough surface of flake shape agglomerated NCC particles was shown in SEM image. Fourier transform infrared (FTIR) spectroscopy showed the removal of lignin and hemicellulose after alkali treatment and bleaching process since there is no peak at wavelength number of 1740 and 1590 cm-1. X-ray diffraction (XRD) analysis revealed that the crystallinity increased from 59.72% to 64.29%.
Â
-
References
[1] Abdul Khalil, H. P. S., Bhat, A. H., & Ireana Yusra, A. F. (2012). Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers, 87(2), 963-979. doi:http://dx.doi.org/10.1016/j.carbpol.2011.08.078
[2] Itoh, T., & Brown Jr, R. (1988). Development of cellulose synthesizing complexes inBoergesenia andValonia. Protoplasma, 144(2-3), 160-169.
[3] Amin, K. N. M., Annamalai, P. K., Morrow, I. C., & Martin, D. (2015). Production of cellulose nanocrystals via a scalable mechanical method. RSC Advances, 5, 57133-57140.
[4] Reddy, J. P., & Rhim, J. W. (2014). Isolation and characterization of cellulose nanocrystals from garlic skin. Materials Letters, 129, 20-23.
[5] Sheltami, R. M., Abdullah, I., Ahmad, I., Dufresne, A., & Kargarzadeh, H. (2012). Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers, 88, 772-779.
[6] Silvério, H. A., Neto, W. P. F., Dantas, N. O., & Pasquini, D. (2013). Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Industrial Crops and Products, 44, 427-436.
[7] Wang, Z. W., Zhu, M. Q., Li, M. F., Wang, J. Q., Wei, Q., & Sun, R. C. (2016). Comprehensive evaluation of the liquid fraction during the hydrothermal treatment of rapeseed straw. Biotechnology for Biofuels, 9, 142. http://doi.org/10.1186/s13068-016-0552-8
[8] Pihlajaniemi V., Sipponen M. H., Pastinen O., Lehtomäki I. & Laakso S. (2015). Yield optimization and rational function modelling of enzymatic hydrolysis of wheat straw pretreated by NaOH-delignification, autohydrolysis and their combination. Green Chem. 17, 1683–1691.
[9] Xie, J., Hse, C. Y., De Hoop C. F., Hu T., Qi J. & Shupe T. F. (2018) Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemi-cal treatment and ultrasonication. Carbohydrate Polymers. 151, 725-734.
[10] Sanchez de la Concha B. B., Agama-Acevedo E., Nuñez-Santiago M. C., Bello-Perez L. A., Garcia H. S. & Alva-rez-Ramirez J. (2017) Acid hydrolysis of waxy starches with different granule size for nanocrystal production. Journal of Cereal Science. 79, 193-200.
[11] Shaheen T. I. & Emam H. E. (2018) Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using Acid hy-drolysis. International Journal of Biological Macromolecules. 107, 1599-1606.
[12] Li, D., Henschen, J., & Ek, M. (2017). Esterification and hydrolysis of cellulose using oxalic acid dihydrate in a solvent-free reaction suitable for preparation of surface-functionalised cellulose nanocrystals with high yield. Green Chemistry, 19(23), 5564–5567.
[13] Abraham, E., Deepa, B., Pothan, L. A., Jacob, M., Thomas, S., Cvelbar, U., & Anandjiwala, R. (2011). Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydrate Polymers, 86(4), 1468–1475.
[14] Sirviö, J. A., Visanko, M., & Liimatainen, H. (2016). Acidic Deep Eutectic Solvents As Hydrolytic Media for Cellulose Nanocrystal Production. Biomacromolecules, 17(9), 3025–3032.
[15] Segal L., Creely J., Martin Jr A. & Conrad C. (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal. 29, 786-794.
[16] Kumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K. (2014). Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. Journal of Materials Physics and Chemistry, 2(1), 1-8.
[17] Hemraz U. D., Boluk Y. & Sunasee R. (2013) Amine-decorated nanocrystalline cellulose surfaces: synthesis, characterization, and surface properties. Canadian Journal of Chemistry. 91, 974-981.
[18] Subair N., Jinitha T. V., Shaniba V., Sreejith M.P., Aparna K. B. & Purushothaman E. (2018) Isolation and characterization of cellulose nanocrystals from sago seed shells. Carbohydrate Polymers. 180, 13-20.
[19] Khalil, H. A., Ismail, H., Rozman, H., & Ahmad, M. (2001). The effect of acetylation on interfacial shear strength between plant fibres and various matrices. European Polymer Journal, 37(5), 1037-1045.
[20] Morán, J. I., Alvarez, V. A., Cyras, V. P., & Vázquez, A. (2008). Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose, 15(1), 149-159.
[21] Lamaming, J., Hashim, R., Sulaiman, O., Leh, C. P., Sugimoto, T., & Nordin, N. A. (2015). Cellulose nanocrystals isolated from oil palm trunk. Carbohydrate Polymers, 127, 202-208.
[22] Poletto, M., Zattera, A. J., & Santana, R. (2012). Structural differences between wood species: evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. Journal of applied polymer science, 126(S1).
[23] Popescu, C.-M., Singurel, G., Popescu, M.-C., Vasile, C., Argyropoulos, D. S., & Willför, S. (2009). Vibrational spectroscopy and X-ray diffraction methods to establish the differences between hardwood and softwood. Carbohydrate Polymers, 77(4), 851-857.
[24] Joonobi, M., Harun, J., Tahir, P. M., Zaini, L. H., SaifulAzry, S., & Makinejad, M. D. (2010). Characteristic of nanofibers extracted from kenaf core. BioResources, 5(4), 2556-2566.
[25] Ouajai, S., & Shanks, R. (2005). Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polymer Degradation and Stability, 89(2), 327-335.
[26] Kumar, A., Negi, Y. S., Bhardwaj, N. K., & Choudhary, V. (2012). Synthesis and characterization of methylcellulose/PVA based porous composite. Carbohydrate Polymers, 88(4), 1364-1372.
[27] Yan, T., Xu, Y., & Yu, C. (2009). The isolation and characterization of lignin of kenaf fiber. Journal of applied polymer science, 114(3), 1896-1901.
[28] Islam M. S., Hasbullah N. A. B., Hasan M., Talib Z. A., Jawaid M. & Haafiz M. M. (2015) Physical, mechanical and biodegradable properties of kenaf/coir hybrid fiber reinforced polymer nanocomposites. Materials Today Communications. 4, 69-76.
[29] Peng, B. L., Dhar, N., Liu, H., & Tam, K. (2011). Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. The Canadian Journal of Chemical Engineering, 89(5), 1191-1206.
[30] Chan H. C., Chia C. H., Zakaria S., Ahmad I. & Dufresne A. (2012) Production and characterisation of cellulose and nano-crystalline cellulose from kenaf core wood. BioResources. 8, 785-794.
[31] de Souza Lima M. M. & Borsali R. (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromolecular Rapid Communications. 25, 771-787.
[32] Tee T. T., Sin L. T., Gobinath R., Bee S. T., Hui D. & Rahmat A. R. (2013) Investigation of nano-size montmorillonite on enhancing polyvinyl alcohol–starch blends prepared via solution cast approach. Composites Part B: Engineering. 47, 238-247.
[33] Li, Q., Zhou, J., & Zhang, L. (2009). Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. Journal of Polymer Science Part B: Polymer Physics, 47(11), 1069-1077.
[34] Li, R., Fei, J., Cai, Y., Li, Y., Feng, J., & Yao, J. (2009). Cellulose whiskers extracted from mulberry: A novel biomass production. Carbohydrate Polymers, 76(1), 94-99.
-
Downloads
-
How to Cite
Akma Mohd Zuki, S., Shaifudin bin Azman, M., Abd Rahman, N., & Fitrah Abu Bakar, N. (2018). Nanocrystalline Cellulose Isolation from Pulverized Kenaf Core using Hydrothermal Treatment with Low Concentration of Oxalic Acid. International Journal of Engineering & Technology, 7(4.18), 311-315. https://doi.org/10.14419/ijet.v7i4.18.21941Received date: 2018-11-27
Accepted date: 2018-11-27
Published date: 2018-11-27