Movement of Fluid Inside the Sphere

  • Authors

    • Ðœ.Ðœ. Abenov
    • Ðœ.B. Gabbassov
    • F.Y. Ismagulova
    2018-11-30
    https://doi.org/10.14419/ijet.v7i4.30.22002
  • continuity equation, four-dimensional functions, generalized Cauchy - Riemann conditions.
  • Abstract

    The paper presents an exact analytical solution of the stationary problem of an incompressible ideal fluid flow inside a sphere under the action of an external potential mass force.

  • References

    1. [1] Stoun M (1937), Application of the theory of Boolean rings to general topology., Trans.Amer.Math.Soc.,41.

      [2] Lоitzansky LG & Drofa M (2003), Fluid Mechanics.

      [3] Ladyzhenskaya OA & Fizmatgiz, M (1961), The Mathematical Theory of Viscous Incompressible Flow.

      [4] Temam R & Mir M (1981), Navier-Stokes Equations: Theory and Numerical Analysis.

      [5] Abenov MM & Almaty (2013), Ðекоторые Ð¿Ñ€Ð¸Ð»Ð¾Ð¶ÐµÐ½Ð¸Ñ spectral theory of bicomplex-variable functions, K2.

      [6] Abenov MM & Almaty (2017), About exact solutions for the continuity equation, K2.

  • Downloads

  • How to Cite

    Abenov, М.М., Gabbassov, М.B., & Ismagulova, F. (2018). Movement of Fluid Inside the Sphere. International Journal of Engineering & Technology, 7(4.30), 42-44. https://doi.org/10.14419/ijet.v7i4.30.22002

    Received date: 2018-11-28

    Accepted date: 2018-11-28

    Published date: 2018-11-30