Analysis of Iterated Affine Transformation Function and Linear Mapping for Content Preservation
-
2018-11-27 https://doi.org/10.14419/ijet.v7i4.19.22014 -
Affine Transformation, Aliasing, Face Recognition, Fractal, Iterated function system, Resampling. -
Abstract
In image scaling contents of image can be distorted which are required to preserve using linear mapping. Geometric transformations can preserve structural properties i.e. parallelism, colinearity and orientation. It is highly desirable to preserve structural properties of image contents because human visual system is very sensitive to distortion of objects. In this paper image scaling is performed using iterative affine transformation and results show that linear mapping function applied on affine space preserve affine properties under affine transformation. A number of scaling operations are applied on image using iterative affine transformation and for each iteration linear mapping is performed to preserved object structure. Analysis present in this paper shows that in image scaling preservation of image content is possible under iterative affine transformation and linear mapping. Image artifacts can be minimize using saliency based antialiasing algorithm after affine transformation.
Â
Â
-
References
[1] T. Gangopadhyay, “The Effect of Multiple Rotations on a Unified System of Affine Transformations with related Trigonometric Coefficientsâ€,International Journal of Computer Applications (0975 – 8887), Volume 139 – No.2, April 2016. pp. 30-35.
[2] DandanZuo, Xin Liu, and Shuangdong Zhu, “Application of Affine Transformation in Traffic Sign Detectionâ€, International Conference on Intelligent Control and Information Processing, 2010, pp. 277-280.
[3] Narayan Paniphi, “Image Registration using Polynomial Affie Transformationâ€, Defence Science Journal, Vol. 52, No. 3, July 2002, pp. 253-259.
[4] Pranab K. Mohanty, Sudeep Sarkar, and RangacharKasturi,â€Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 2005. pp. 1-8.
[5] C.VictoriaPriscilla,B.Poorna, “Image Registration and Nose Detection Using Affine Transformationâ€, International .Journal of.Computer Technology & Applications, Vol 4 (2), pp. 209-216.
[6] Mohsen Toorani, AbolfazlFalahati, “A secure cryptosystem based on affine transformationâ€,Proceedings of 2011 security and communication network. pp. 207-215.
[7] Shen Wang, Xianhua Song, XiamuNiu, “An Affine Transformation Based Image Steganography Approachâ€, International Journal of Digital Content Technology and its Applications (JDCTA) Vol.6, No.1, January 2012.
[8] Hongmeng Chen, Ming Li, Yunlong Lu, Yan Wu, “A DBS Image Stitching Algorithm Based On Affine Transformationâ€, Proceedings of Radar Conference, 2013.
[9] Che-Han Chang, Yung-Yu Chuang, “A Line-Structure-Preserving Approach to Image Resizingâ€, Proceedings of Computer Vision and Pattern Recognition (CVPR), 2012. pp. 1075-1082.
[10] NafiseZarei, AbdolrezaSepyani, “Different methods of image mapping, its advantages and disadvantagesâ€, International Academic Journal of Science and Engineering Vol. 3, No. 4, 2016, pp. 1-10.
[11] R.Uthayakumar&G.ArockiaPrabakar, “Creation of Fractal Objects by Using Iterated Function Systemâ€, Computing Communication & Networking Technologies (ICCCNT), 2012.
[12] Ljubiˇsa M. Koci´c and Marjan M. Mateji´c,â€Contractive Affine Transformations Of Complex Plane & Applicationsâ€, Facta Universities (NIS) ˇ Ser. Math. Inform. 21 (2006), pp. 65–75.
[13] Yao Xiao, “Fast skewed object matching with adaptive rotation steps based on affine transformationâ€, IEEE conf. International Congress on Image and Signal Processing, BioMedical Engineering and Informatics,2017.
[14] Lei Yu, “Large Screen Interactive Touch System Based on Affine Transformation“, IEEE Conf. 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 544-548, 2017.
[15] RediaRedzuwan, “Affine versus projective transformation for SIFT and RANSAC image matching methods“ , IEEE Conf. International Conference on Signal and Image Processing Applications (ICSIPA), pp. 447-451, 2015.
[16] Xuan Li, “Affine-Transformation Parameters Regression for Face Alignment“, IEEE Signal Processing Letters, Vol. 23, Issue. 1, pp.55-59, 2018.
[17] Mankyu Sung,â€Selective Anti-Aliasing for Virtual Reality Based on Saliency Mapâ€, IEEE Conf. International Symposium on Ubiquitous Virtual Reality, 2017, pp. 16-19.
-
Downloads
-
How to Cite
Garg, A., Negi, A., & Chauhan, G. (2018). Analysis of Iterated Affine Transformation Function and Linear Mapping for Content Preservation. International Journal of Engineering & Technology, 7(4.19), 50-57. https://doi.org/10.14419/ijet.v7i4.19.22014Received date: 2018-11-28
Accepted date: 2018-11-28
Published date: 2018-11-27