Characterisation of Skin Biomechanical Properties via Experiment-Numerical Integration
-
2018-11-30 https://doi.org/10.14419/ijet.v7i4.26.22168 -
Animal, Skin, Hyperelastic, Ogden, Mooney-Rivlin and Tensile. -
Abstract
By having specific mechanical properties of skin, computational program and analysis become more reliable by showing the real skin behaviour. Up to date, mechanical properties of biological soft tissues (skin) haven’t been accepted solely for official usage. Therefore, characterisation of the skin biomechanical properties might contribute a new knowledge to the engineering and medical sciences societies. This paper highlights the success in characterising the hyperelastic parameters of leporine (rabbit) skin via experimental-numerical integration. A set of five sample of leporine skin were stretched using the conventional tensile test machine to generate the load-displacement graphs. Based on the Ogden’s constitutive equation and Mooney-Rivlin hyperelastic model, a stress-stretch equation was developed and a programme was written using Matlab. By varying the Ogden’s and Mooney-Rivlin’s parameters, the programme was capable of plotting stress-stretch and load-displacement graphs. The graphs that best match the experimental results will constitut to the corresponding coefficient, µ, and α for Ogden Model and C1 and C2 material parameter for Mooney-Rivlin Model that will best describe the behaviour of the leporine skin. The current results show that the Ogden’s coefficient and exponent for the subject was estimated to be (μ = 0.048MPa, α = 7.073) & (μ = 0.020MPa, α = 9.249) for Anterior-Posterior (AP) and Dorsal-Ventral (DV) respectively for Ogden Model. Meanwhile the value for Mooney-Rivlin Model were estimated to be (C1 = 1.271, C2 = 1.868) & (C1 = 1.128, C2 = 1.537) for AP and DV respectively, which is in close agreement to results found by other researchers. Further analyses for comparison could be carried out by developing mathematical model based on other constitutive equation such as Arruda-Boyce and Neo-Hookean. Nevertheless, this study has contributed to the knowledge about skin behaviour and the results are useful for references.
Â
Â
-
References
[1] J. Lim, J. Hong, W. W. Chen, T. Weerasooriya, Mechanical response of pig skin under dynamic tensile loading, Int. J. Impact Eng. 38(2-3) (2011) 130-135.
[2] C. Edwards, R. Marks, Evaluation of biomechanical properties of human skin, Clin. Dermatol. 13(4) (1995) 375-380.
[3] O. A. Shergold, N. A. Fleck, D. Radford, The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates, Int. J. Impact Eng. 32(9) (2006) 1384-1402.
[4] F. P. Schmook, J. G. Meingassner, A. Billich, Comparison of human skin or epidermis models with human and animal skin in in-vitro percutaneous absorption, Int. J. Pharmaceut. 215(1-2) (2001) 51-56.
[5] J. Ankersen, A. Birkbeck, R. Thomson, P. Vanezis, Puncture resistance and tensile strength of skin simulants, Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 213(6) (1999) 493-501.
[6] E. Drakaki, M. Makropoulou, A. A. Serafetinides, E. Borisova, L. Avramov, J. A. Sianoudis, Optical spectroscopic studies of animal skin used in modelling of human cutaneous tissue, Sunny Beach, 2007.
[7] N. Gundiah, M. B Ratcliffe, L. A. Pruitt, Determination of strain energy function for arterial elastin: Experiments using histology and mechanical tests, J. Biomech. 40(3) (2007) 586-594.
[8] J. W. Y. Jor, P. M. F. Nielsen, M. P. Nash, P. J. Hunter, Modelling collagen fibre orientation in porcine skin based upon confocal laser scanning microscopy, Skin Res. Technol. 17(2) (2011) 149-159.
[9] S. Keke, L. Ying, L. Yixing, G. Yu, W. Lijun, C. Xiaoqi, Study of a new parameter used in objective measurement of skin erythema, Wuhan, 2007.
[10] K. H. Lim, C. M. Chew, P. C. Y. Chen, S. Jeyapalina, H. N. Ho, J. K. Rappel, B. H. Lim, New extensometer to measure in vivo uniaxial mechanical properties of human skin, J. Biomech. 41(5) (2008) 931-936.
[11] M. Lin, X. Zhai, S. Wang, Z. Wang, F. Xu, T. J. Lu, Influences of supra-physiological temperatures on microstructure and mechanical properties of skin tissue, Med. Eng. Phys. 34(8) (2012) 1149-1156.
[12] B. A. Dowling, A. J. Dart, Mechanical and functional properties of the equine superficial digital flexor tendon, Vet. J. 170(2) (2005) 184-192.
[13] K. G. Gebremedhin, B. Wu, A model of evaporative cooling of wet skin surface and fur layer, J. Therm. Biol. 26(6) (2001) 537-545.
[14] Z. Li, D. Paudecerf, J. Yang, Mechanical behaviour of natural cow leather in tension, Acta Mechanica Solida Sinica, 22(1) (2009) 37-44.
[15] C. Bismuth, C. Gerin, E. Viguier, D. Fau, F. Dupasquier, L. Cavetier, L. David, C. Carozzo, The biomechanical properties of canine skin measured in situ by uniaxial extension, J. Biomech. 47(5) (2014) 1067-1073.
[16] R. J. F. Oliveira, R. G. Costa, W. H. Sousa, A. N. Medeiros, M. A. B. Dal Monte, D. Aquino, C. J. B. Oliveira, Influence of genotype on physico-mechanical characteristics of goat and sheep leather, Small Ruminant Res. 73(1-3) (2007) 181-185.
[17] M. Chizari, M. Snow, W. Cheung, J. Mahmud, B. Wang, Relative Motion of Tendon Limbs in a Loos Tendon Graft, Biomed. Eng.: Appl. Basis Commun. 24 (2012) 447-451.
[18] G. M. Cooney, K. M. Moerman, M. Takaza, D. C. Winter, C. K. Simms, Uniaxial and biaxial mechanical properties of porcine linea alba, J. Mech. Behav. Biomed. Mater. 41 (2015) 68-82.
[19] D. Taylor, N. O’Mara, E. Ryan, M. Takaza, C. Simms, The fracture toughness of soft tissues, J. Mech. Behav. Biomed. Mater. 6 (2012) 139-147.
[20] K. S. Miller, L. Edelstein, B. K. Connizzo, L. J. Soslowsky, Effect of Preconditioning and Stress Relaxation on Local Collagen Fiber Re-Alignment: Inhomogeneous Properties of Rat Supraspinatus Tendon, J. Biomech. Eng. 134(3) (2012) 31007-NaN.
[21] V. Luboz, M. Petrizelli, M. Bucki, B. Diot, N. Vuillerme, Y. Payan, Biomechanical modeling to prevent ischial pressure ulcers, J. Biomech. 47(10) (2014) 2231-2236.
[22] N. Latifi, A. K. Miri, L. Mongeau, Determination of the elastic properties of rabbit vocal fold tissue using uniaxial tensile testing and a tailored finite element model, J. Mech. Behav. Biomed. Mater. 39 (2014) 366-374.
[23] NFA Manan, SNAM Noor, NN Azmi, J Mahmud."Numerical investigation of Ogden and Mooney-Rivlin material parameters", ARPN Journal of Engineering and Applied Sciences, Vol.10, No.15, (2015), pp.6329-6335.
[24] J Mahmud, CA Holt, SL Evans, NFA Manan. "Quantifying skin properties using a novel integration experiment-finite element simulation and skin pre-stretch model", Advanced Science Letters, Vol.19, No.11, (2013), pp3155-3160.
[25] Ogden, R.W., “Large Deformation Isotropic Elasticity: On the Correlation of Theory and Experiment for Incompressible Rubberlike Solidsâ€. Proceedings of Royal Soc London, 326 (1972) 565-584.
[26] Evans, S.L., “On the Implementation of a Wrinkling Hyperelastic Membrane Model for Skin and Other Materials,†Computer Methods on Biomechanics and Biomedical Engineering, 12 (2009) 319-332.
[27] Evans, S.L, Holt, C.A., “Measuring the Mechanical Properties of Human Skin In Vivo using Digital Image Correlation and Finite Element Modelling,†J. Strain Analysis for Engineering Design, 44 (2009) 337-345.
[28] M. Sasso, G. Palmieri, G. Chiappini, and D. Amodio, "Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods," Polymer Testing, 27 (2008) 995-1004.
-
Downloads
-
How to Cite
Fazli Adull Manan, N., Muhamad, L., Adam Mohd Adnan, Z., Azman Yahaya, M., & Mahmud, J. (2018). Characterisation of Skin Biomechanical Properties via Experiment-Numerical Integration. International Journal of Engineering & Technology, 7(4.26), 205-208. https://doi.org/10.14419/ijet.v7i4.26.22168Received date: 2018-11-29
Accepted date: 2018-11-29
Published date: 2018-11-30