A Review on Characterization of Sediments for Green Bricks Production
-
2018-11-30 https://doi.org/10.14419/ijet.v7i4.35.22319 -
sediment, characterization, environmental, brick. -
Abstract
Accumulation of dredged sediment has raised environmental concern in various countries. Recycling of sediment into bricks is a viable solution to the environmental pollution. Concerning to the utilization of sediment in bricks, this study reviews the needs of characterization on sediment and methods of producing sediment bricks. Particle size distribution was found to be the key criteria for characterization of sediment. Sizes of particles determined the function of the sediments in the bricks. In spite of that, leachability of heavy metals is another important aspect for contaminated sediment. Cementing bricks used cementing materials as the stabilization agent to the heavy metals. It is necessary to conduct leaching test for the end-product of the sediment to ensure the heavy metals leached are within the regulatory limits. In conclusion, method of producing sediment bricks may vary due to the various characteristics of sediment for a promising environmental friendly production. Â
-
References
[1] V. Mymrin, J.C. Stella, C.B. Scremim, R.C.Y. Pan, F.G. Sanches, K. Alekseev, D.E. Pedroso, A. Molinetti, O.M. Fortini, Utilization of sediments dredged from marine ports as a principal component of composite material, J. Clean. Prod. 142 (2017) 4041–4049. doi:10.1016/j.jclepro.2016.10.035.
[2] B. Serbah, N. Abou-Bekr, S. Bouchemella, J. Eid, S. Taibi, Dredged sediments valorisation in compressed earth blocks: Suction and water content effect on their mechanical properties, Constr. Build. Mater. 158 (2018) 503–515. doi:10.1016/j.conbuildmat.2017.10.043.
[3] A. Mezencevova, N.N. Yeboah, S.E. Burns, L.F. Kahn, K.E. Kurtis, Utilization of Savannah Harbor river sediment as the primary raw material in production of fired brick, J. Environ. Manage. 113 (2012) 128–136. doi:10.1016/j.jenvman.2012.08.030.
[4] M.S.S. Almeida, L.S. Borma, M.C. Barbosa, Land disposal of river and lagoon dredged sediments, Eng. Geol. 60 (2001) 21–30. doi:10.1016/S0013-7952(00)00085-5.
[5] C.W. Tang, H.J. Chen, S.Y. Wang, J. Spaulding, Production of synthetic lightweight aggregate using reservoir sediments for concrete and masonry, Cem. Concr. Compos. 33 (2011) 292–300. doi:10.1016/j.cemconcomp.2010.10.008.
[6] H.H. Liang, J.L. Li, The influence of hydration and swelling properties of gypsum on the preparation of lightweight brick using water supply reservoir sediment, Constr. Build. Mater. 94 (2015) 691–700. doi:10.1016/j.conbuildmat.2015.07.111.
[7] Y.L. Wei, C.Y. Lin, S.H. Cheng, H.P. Wang, Recycling steel-manufacturing slag and harbor sediment into construction materials, J. Hazard. Mater. 265 (2014) 253–260. doi:10.1016/j.jhazmat.2013.11.049.
[8] K.Y. Chiang, K.L. Chien, S.J. Hwang, Study on the characteristics of building bricks produced from reservoir sediment, J. Hazard. Mater. 159 (2008) 499–504. doi:10.1016/j.jhazmat.2008.02.046.
[9] P. Muñoz Velasco, M.P. Morales OrtÃz, M.A. MendÃvil Giró, L. Muñoz Velasco, Fired clay bricks manufactured by adding wastes as sustainable construction material – A review, Constr. Build. Mater. 63 (2014) 97–107. doi:10.1016/J.CONBUILDMAT.2014.03.045.
[10] D. Baruzzo, D. Minichelli, S. Bruckner, L. Fedrizzi, A. Bachiorrini, S. Maschio, Possible production of ceramic tiles from marine dredging spoils alone and mixed with other waste materials., J. Hazard. Mater. 134 (2006) 202–10. doi:10.1016/j.jhazmat.2005.10.053.
[11] F. Haurine, I. Cojan, M.A. Bruneaux, Development of an industrial mineralogical framework to evaluate mixtures from reservoir sediments for recovery by the heavy clay industry: Application of the Durance system (France), Appl. Clay Sci. 132–133 (2016) 508–517. doi:10.1016/j.clay.2016.07.022.
[12] K. Sultan, N.A. Shazili, Geochemical baselines of major, minor and trace elements in the tropical sediments of the Terengganu River basin, Malaysia, Int. J. Sediment Res. 25 (2010) 340–354. doi:10.1016/S1001-6279(11)60002-4.
[13] K.A. Northcott, I. Snape, M.A. Connor, G.W. Stevens, Water treatment design for site remediation at Casey Station, Antarctica: site characterisation and particle separation, Cold Reg. Sci. Technol. 37 (2003) 169–185. doi:10.1016/S0165-232X(03)00039-9.
[14] C.S. Shon, D. Saylak, D.G. Zollinger, Potential use of stockpiled circulating fluidized bed combustion ashes in manufacturing compressed earth bricks, Constr. Build. Mater. 23 (2009) 2062–2071. doi:10.1016/j.conbuildmat.2008.08.025.
[15] M. Samara, Z. Lafhaj, C. Chapiseau, Valorization of stabilized river sediments in fired clay bricks: Factory scale experiment, J. Hazard. Mater. 163 (2009) 701–710. doi:10.1016/j.jhazmat.2008.07.153.
[16] Y. Xu, C. Yan, B. Xu, X. Ruan, Z. Wei, The use of urban river sediments as a primary raw material in the production of highly insulating brick, Ceram. Int. 40 (2014) 8833–8840. doi:10.1016/j.ceramint.2014.01.105.
[17] I. Said, A. Missaoui, Z. Lafhaj, Reuse of Tunisian marine sediments in paving blocks: factory scale experiment, J. Clean. Prod. 102 (2015) 66–77. doi:10.1016/j.jclepro.2015.04.138.
[18] M. Peña-Icart, E.R. Pereira-Filho, L. Lopes Fialho, J.A. Nóbrega, C. Alonso-Hernández, Y. Bolaños-Alvarez, M.S. Pomares-Alfonso, Combining contamination indexes, sediment quality guidelines and multivariate data analysis for metal pollution assessment in marine sediments of Cienfuegos Bay, Cuba, Chemosphere. 168 (2017) 1267–1276. doi:10.1016/j.chemosphere.2016.10.053.
[19] S.A. El-Sayed, E.M.M. Moussa, M.E.I. El-Sabagh, Evaluation of heavy metal content in Qaroun Lake, El-Fayoum, Egypt. Part I: Bottom sediments, J. Radiat. Res. Appl. Sci. 8 (2015) 276–285. doi:10.1016/j.jrras.2015.02.011.
[20] J. Liao, J. Chen, X. Ru, J. Chen, H. Wu, C. Wei, Heavy metals in river surface sediments affected with multiple pollution sources, South China: Distribution, enrichment and source apportionment, J. Geochemical Explor. 176 (2017) 9–19. doi:10.1016/j.gexplo.2016.08.013.
[21] J. Khairiah, K.H. Lim, R. Ahmad-Mahir, B.S. Ismail, Heavy metals from agricultural soils from Cameron Highlands, Pahang, and Cheras, Kuala Lumpur, Malaysia, Bull. Environ. Contam. Toxicol. 77 (2006) 608–615. doi:10.1007/s00128-006-1106-8.
[22] W.Y.W. Abdullah, R.B. Salama, B.Y. Aminuddin, Impacts of agricultural activities on soil erosion and water resources in the Cameron Highlands, in: Conf. Agrochem. Pollut. Water Resour., Hat Yai, Thailand, 2001: pp. 26–31. http://www.cabdirect.org/abstracts/20023002850.html.
[23] A.S.M. El Idrissi, Y. Mohd Khanif, H. Aminuddin, Heavy metal in cabbage and soils from Cameron Highlands, in: Proceeding Malaysian Soc. Soil Sc. Conf., 2002.
[24] M. Barbieri, G. Sappa, S. Vitale, B. Parisse, M. Battistel, Soil control of trace metals concentrations in landfills: A case study of the largest landfill in Europe, Malagrotta, Rome, J. Geochemical Explor. 143 (2014) 146–154. doi:10.1016/j.gexplo.2014.04.001.
[25] F. Ruiz, Trace Metals in Estuarine Sediments from the Southwestern Spanish Coast, Mar. Pollut. Bull. 42 (2001) 482–490.
[26] K.K. Turekian, K.H. Wedepohl, Distribution of the elements in some major units of the Earth’s crust, Geol. Soc. Am. Bull. 72 (1961) 175–192.
[27] E.P. Nobi, E. Dilipan, T. Thangaradjou, K. Sivakumar, L. Kannan, Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India, Estuar. Coast. Shelf Sci. 87 (2010) 253–264. doi:10.1016/j.ecss.2009.12.019.
[28] N. Hanif, S.A.M.A.S. Eqani, S.M. Ali, A. Cincinelli, N. Ali, I.A. Katsoyiannis, Z.I. Tanveer, H. Bokhari, Geo-accumulation and enrichment of trace metals in sediments and their associated risks in the Chenab River, Pakistan, J. Geochemical Explor. 165 (2016) 62–70. doi:10.1016/j.gexplo.2016.02.006.
[29] J. Ooi, L. Ean, B. Mohammed, M. Malek, L. Wong, C. Tang, H. Chua, Study on the Properties of Compressed Bricks Using Cameron Highlands Reservoir Sediment as Primary Material, Appl. Mech. 710 (2015) 25–29.
[30] Z. Lafhaj, M. Samara, F. Agostini, L. Boucard, F. Skoczylas, G. Depelsenaire, Polluted river sediments from the North region of France: Treatment with Novosol® process and valorization in clay bricks, Constr. Build. Mater. 22 (2008) 755–762. doi:10.1016/j.conbuildmat.2007.01.023.
[31] G.E. Voglar, D. Leštan, Solidification/stabilisation of metals contaminated industrial soil from former Zn smelter in Celje, Slovenia, using cement as a hydraulic binder, J. Hazard. Mater. 178 (2010) 926–933. doi:10.1016/j.jhazmat.2010.02.026.
[32] D. Maskell, A. Heath, P. Walker, Use of metakaolin with stabilised extruded earth masonry units, Constr. Build. Mater. 78 (2015) 172–180. doi:10.1016/j.conbuildmat.2015.01.041.
[33] Noor-ul-Amin, Use of clay as a cement replacement in mortar and its chemical activation to reduce the cost and emission of greenhouse gases, Constr. Build. Mater. 34 (2012) 381–384. doi:10.1016/j.conbuildmat.2012.02.022.
[34] Y. Nurchasanah, Characteristic of “Tulakan†Soil as Natural Pozzolan to Substitute Portland Cement as Construction Material, Procedia Eng. 54 (2013) 764–773. doi:10.1016/j.proeng.2013.03.070.
[35] B. Samet, T. Mnif, M. Chaabouni, Use of a kaolinitic clay as a pozzolanic material for cements: Formulation of blended cement, Cem. Concr. Compos. 29 (2007) 741–749. doi:10.1016/j.cemconcomp.2007.04.012.
[36] A.R. Pourkhorshidi, M. Najimi, T. Parhizkar, F. Jafarpour, B. Hillemeier, Applicability of the standard specifications of ASTM C618 for evaluation of natural pozzolans, Cem. Concr. Compos. 32 (2010) 794–800. doi:10.1016/j.cemconcomp.2010.08.007.
[37] E.M. Perez-Monserrat, F. Agua, R. Fort, M. Alvarez De Buergo, J.F. Conde, M. GarcÃa-Heras, Effect of manufacturing methods on the decay of ceramic materials: A case study of bricks in modern architecture of Madrid (Spain), Appl. Clay Sci. 135 (2017) 136–149. doi:10.1016/j.clay.2016.09.015.
[38] C. Grifa, C. Germinario, A. De Bonis, M. Mercurio, F. Izzo, F. Pepe, P. Bareschino, C. Cucciniello, V. Monetti, V. Morra, P. Cappelletti, G. Cultrone, A. Langella, Traditional brick productions in Madagascar: From raw material processing to firing technology, Appl. Clay Sci. 150 (2017) 252–266. doi:10.1016/j.clay.2017.09.033.
[39] P. Muñoz V, M.P. Morales O, V. Letelier G, M.A. MendÃvil G, Fired clay bricks made by adding wastes: Assessment of the impact on physical, mechanical and thermal properties, Constr. Build. Mater. 125 (2016) 241–252. doi:10.1016/j.conbuildmat.2016.08.024.
[40] L. Zhang, Production of bricks from waste materials - A review, Constr. Build. Mater. 47 (2013) 643–655. doi:10.1016/j.conbuildmat.2013.05.043.
[41] S. Samal, A.K. Ray, A. Bandopadhyay, Characterization and microstructure observation of sintered red mudefly ash mixtures at various elevated temperature, J. Clean. Prod. 101 (2015) 368–376. doi:10.1016/j.jclepro.2015.04.010.
[42] M.B. Diop, M.W. Grutzeck, L. Molez, Comparing the performances of bricks made with natural clay and clay activated by calcination and addition of sodium silicate, Appl. Clay Sci. 54 (2011) 172–178. doi:10.1016/j.clay.2011.08.005.
[43] V. Živica, S. Balkovic, M. Drabik, Properties of metakaolin geopolymer hardened paste prepared by high-pressure compaction, Constr. Build. Mater. 25 (2011) 2206–2213. doi:10.1016/j.conbuildmat.2010.11.004.
[44] A. Petrillo, R. Cioffi, C. Ferone, F. Colangelo, C. Borrelli, Eco-sustainable Geopolymer Concrete Blocks Production Process, Agric. Agric. Sci. Procedia. 8 (2016) 408–418. doi:10.1016/j.aaspro.2016.02.037.
[45] M.B. Diop, M.W. Grutzeck, Low temperature process to create brick, Constr. Build. Mater. 22 (2008) 1114–1121. doi:10.1016/j.conbuildmat.2007.03.004.
[46] S.N. Monteiro, C.M.F. Vieira, On the production of fired clay bricks from waste materials: A critical update, Constr. Build. Mater. 68 (2014) 599–610. doi:10.1016/j.conbuildmat.2014.07.006.
[47] I. González, E. Galán, A. Miras, M.A. Vázquez, CO2 emissions derived from raw materials used in brick factories. Applications to Andalusia (Southern Spain), Appl. Clay Sci. 52 (2011) 193–198. doi:10.1016/j.clay.2011.01.003.
[48] D. Wattanasiriwech, A. Saiton, S. Wattanasiriwech, Paving blocks from ceramic tile production waste, J. Clean. Prod. 17 (2009) 1663–1668. doi:10.1016/j.jclepro.2009.08.008.
[49] R. Bahar, M. Benazzoug, S. Kenai, Performance of compacted cement-stabilised soil, Cem. Concr. Compos. 26 (2004) 811–820. doi:10.1016/j.cemconcomp.2004.01.003.
[50] N. Saikia, P. Sengupta, P.K. Gogoi, P.C. Borthakur, Kinetics of dehydroxylation of kaolin in presence of oil field effluent treatment plant sludge, Appl. Clay Sci. 22 (2002) 93–102.
[51] J.E. Boulingui, C. Nkoumbou, D. Njoya, F. Thomas, J. Yvon, Characterization of clays from Mezafe and Mengono (Ne-Libreville, Gabon) for potential uses in fired products, Appl. Clay Sci. 115 (2015) 132–144. doi:10.1016/j.clay.2015.07.029.
[52] S.P. Raut, R. V Ralegaonkar, S.A. Mandavgane, Development of sustainable construction material using industrial and agricultural solid waste: A review of waste-create bricks, Constr. Build. Mater. 25 (2011) 4037–4042. doi:10.1016/j.conbuildmat.2011.04.038.
[53] Y.L. Wei, C.Y. Lin, H.P. Wang, Detoxification of hazardous dust with marine sediment, Mar. Pollut. Bull. 85 (2014) 810–815. doi:10.1016/j.marpolbul.2014.01.016.
[54] Y. Xu, C. Yan, B. Xu, X. Ruan, Z. Wei, The use of urban river sediments as a primary raw material in the production of highly insulating brick, Ceram. Int. 40 (2014) 8833–8840. doi:10.1016/j.ceramint.2014.01.105.
[55] V. Cappuyns, V. Deweirt, S. Rousseau, Dredged sediments as a resource for brick production: Possibilities and barriers from a consumers’ perspective, Waste Manag. 38 (2015) 372–380. doi:10.1016/j.wasman.2014.12.025.
[56] L. Wang, T.L.K. Yeung, A.Y.T. Lau, D.C.W. Tsang, C.S. Poon, Recycling contaminated sediment into eco-friendly paving blocks by a combination of binary cement and carbon dioxide curing, J. Clean. Prod. 164 (2017) 1279–1288. doi:10.1016/j.jclepro.2017.07.070.
[57] Y.L. Cheng, H.M. Wee, P.S. Chen, Y.Y. Kuo, G.J. Chen, Innovative reservoir sediments reuse and design for sustainability of the hydroelectric power plants, Renew. Sustain. Energy Rev. 36 (2014) 212–219. doi:10.1016/j.rser.2014.04.065.
[58] K.T. Ho, R.M. Burgess, M.C. Pelletier, J.R. Serbst, S.A. Ryba, M.G. Cantwell, A. Kuhn, P. Raczelowski, An overview of toxicant identification in sediments and dredged materials, Mar. Pollut. Bull. 44 (2002) 286–293.
[59] J. Stronkhorst, M.E. Schot, M.C. Dubbeldam, K.T. Ho, A toxicity identification evaluation of silty marine harbor sediments to characterize persistent and non-persistent constituents, Mar. Pollut. Bull. 46 (2003) 56–64.
[60] K.W. Chau, Persistent organic pollution characterization of sediments in Pearl River estuary, Chemosphere. 64 (2006) 1545–1549. doi:10.1016/j.chemosphere.2005.11.060.
[61] M.C. Casado-MartÃnez, J.L. Buceta, M.J. Belzunce, T.A. Delvalls, Using sediment quality guidelines for dredged material management in commercial ports from Spain, Environ. Int. 32 (2005) 388–396. doi:10.1016/j.envint.2005.09.003.
[62] J.M. Besser, W.G. Brumbaugh, C.G. Ingersoll, Characterizing toxicity of metal-contaminated sediments from mining areas, Appl. Geochemistry. 57 (2015) 73–84. doi:10.1016/j.apgeochem.2014.05.021.
[63] X. Ke, L. Gao, H. Huang, S. Kumar, Toxicity identification evaluation of sediments in Liaohe River, Mar. Pollut. Bull. 93 (2015) 259–265. doi:10.1016/j.marpolbul.2015.01.020.
[64] E. Giama, A.M. Papadopoulos, Assessment tools for the environmental evaluation of concrete, plaster and brick elements production, J. Clean. Prod. 99 (2015) 75–85. doi:10.1016/j.jclepro.2015.03.006.
-
Downloads
-
How to Cite
Ean, L. W., Malek, M. A., Mohammed, B. S., Tang, C.-W., & Bong, P. X. H. (2018). A Review on Characterization of Sediments for Green Bricks Production. International Journal of Engineering & Technology, 7(4.35), 41-47. https://doi.org/10.14419/ijet.v7i4.35.22319Received date: 2018-11-29
Accepted date: 2018-11-29
Published date: 2018-11-30