A Review of Energy Harvesting Methods for Power Transmission Line Monitoring Sensors

  • Authors

    • Suganthi Yeesparan
    • Mohd Zafri Bin Baharuddin
    • Norashidah Bt Md Din
    • Mohamad Halil Haron
    2018-11-30
    https://doi.org/10.14419/ijet.v7i4.35.22348
  • Condition Monitoring Sensor, Energy Harvesting, Electric Field, Power Transmission System
  • Condition monitoring sensors have the responsibility of reducing occupational failures or unscheduled shutdowns especially in power transmission line systems. Existing sensors that are used for condition monitoring are mostly battery-dependent. Powering up these sensors in difficult to access areas where high voltage transmission line usually runs is a challenge because batteries usually have a limited life cycle. Power sources other than batteries such as harvesting from solar energy, magnetic energy, radio frequency energy either produces insufficient energy or not entirely available all the time. Electric Field Energy Harvesting (EFEH) overcomes many of these disadvantages and provides a quality and continuous power source to be used to power up devices especially the monitoring sensors that are used in transmission line monitoring. This paper presents key aspects and drawbacks of six types of energy harvesting methods and a review of existing energy harvesters. The concept of electric field and the usage of EFEH in power transmission line system are explained and a comparison between EFEH with typical energy harvesting methods is discussed. This paper finds that EFEH devices have potential to provide sufficient energy for low powered condition monitoring sensors. Moreover, several improved EFEH approaches are proposed, and future trends are discussed.

  • References

    1. [1] R. Bogue, “Sensors for condition monitoring: A review of technologies and applications,†Sens. Rev., vol. 33, no. 4, pp. 295–299, 2013.

      [2] J. K. Hart and K. Martinez, “Environmental Sensor Networks: A revolution in the earth system science?,†Earth-Science Rev., vol. 78, no. 3–4, pp. 177–191, 2006.

      [3] A. Tiwari, P. Ballal, and F. L. Lewis, “Energy-efficient wireless sensor network design and implementation for condition-based maintenance,†ACM Trans. Sens. Networks, vol. 3, no. 1, p. 1–es, 2007.

      [4] T. O’Donovan, J. O’Donoghue, C. Sreenan, D. Sammon, P. O’Reilly, and K. A. O’Connor, “A context aware wireless body area network (BAN),†Pervasive Comput. Technol. Heal. 2009. PervasiveHealth 2009. 3rd Int. Conf., pp. 1–8, 2009.

      [5] V. Peiris, Highly integrated wireless sensing for body area network applications. 2013.

      [6] S. Pal, D. Bhattacharyya, G. S. Tomar, and T. Kim, “Wireless Sensor Networks and Its Routing Protocols: A Comparative Study,†2010 Int. Conf. Comput. Intell. Commun. Networks, pp. 314–319, 2010.

      [7] P. Tiwari, V. P. Saxena, R. G. Mishra, and D. Bhavsar, “Wireless Sensor Networks: Introduction, Advantages, Applications and Research Challenges Introduction to Wireless Networks,†HCTL Open Int. J. Technol. Innov. Res. ISBN, vol. 14, no. April, pp. 2321–1814, 2015.

      [8] K. S. Hung et al., “On Wireless Sensors Communication for Overhead Transmission Line Monitoring in Power Delivery Systems,†2010 First IEEE Int. Conf. Smart Grid Commun., pp. 309–314, 2010.

      [9] Y. Yang, G. Xie, X. Xu, and Y. Jiang, “A monitoring system design in transmission lines based on wireless sensor networks,†Energy Procedia, vol. 12, pp. 192–199, 2011.

      [10] A. T. I. Fayeez, V. R. Gannapathy, I. S. Md Isa, M. K. Nor, and N. L. Azyze, “Literature review of battery-powered and solar-powered wireless sensor node,†ARPN J. Eng. Appl. Sci., vol. 10, no. 2, pp. 671–677, 2015.

      [11] M. Zhu, M. D. Judd, and P. J. Moore, “Energy harvesting in substations for powering autonomous sensors,†Proc. - 2009 3rd Int. Conf. Sens. Technol. Appl. SENSORCOMM 2009, pp. 246–251, 2009.

      [12] S. Blundell and K. M. Blundell, Concepts in Thermal Physics. OUP Oxford, 2010.

      [13] R. Moghe, Yi Yang, F. Lambert, and D. Divan, “A scoping study of electric and magnetic field energy harvesting for wireless sensor networks in power system applications,†2009 IEEE Energy Convers. Congr. Expo., pp. 3550–3557, 2009.

      [14] J. H. Kiely, D. V Morgan, and D. M. Rowe, “The design and fabrication of a miniature thermoelectric generator using MOS processing techniques,†Meas. Sci. Technol., vol. 5, no. 2, p. 182, 1994.

      [15] M. Stordeur and I. Stark, “Low power thermoelectric generator-self-sufficient energy supply for micro systems,†in Thermoelectrics, 1997. Proceedings ICT ’97. XVI International Conference on, 1997, pp. 575–577.

      [16] I. Stark and M. Stordeur, “New micro thermoelectric devices based on bismuth telluride-type thin solid films,†in Thermoelectrics, 1999. Eighteenth International Conference on, 1999, pp. 465–472.

      [17] V. Peiris et al., “Energy harvesting for wireless communication systems using thermogenerators,†in SPIE Newsroom, 2006, vol. 58, no. 7, pp. 2597–2604.

      [18] G. Savelli et al., “Energy Conversion Using New Thermoelectric Generator,†no. April, pp. 26–28, 2006.

      [19] H. A. Sodano, G. E. Simmers, R. Dereux, and D. J. Inman, “Recharging Batteries using Energy Harvested from Thermal Gradients,†J. Intell. Mater. Syst. Struct., vol. 18, no. 1, pp. 3–10, Oct. 2006.

      [20] I. Stark, “Invited Talk: Thermal Energy Harvesting with Thermo Life,†in International Workshop on Wearable and Implantable Body Sensor Networks (BSN’06), 2006, pp. 19–22.

      [21] L. Mateu, C. Codrea, N. Lucas, M. Pollak, and P. Spies, “Human Body Energy Harvesting Thermogenerator for Sensing Applications,†in 2007 International Conference on Sensor Technologies and Applications (SENSORCOMM 2007), 2007, pp. 366–372.

      [22] M. Kishi et al., “Micro thermoelectric modules and their application to wristwatches as an energy source,†in Thermoelectrics, 1999. Eighteenth International Conference on, 1999, pp. 301–307.

      [23] J. A. Paradiso and T. Starner, “Energy scavenging for mobile and wireless electronics,†IEEE Pervasive Comput., vol. 4, no. 1, pp. 18–27, 2005.

      [24] C. B. Vining, “An inconvenient truth about thermoelectrics,†Nat. Mater., vol. 8, p. 83, Feb. 2009.

      [25] “Tellurex Corporation,†2012. [Online]. Available: http://www.tellurex.com. [Accessed: 11-Feb-2018].

      [26] P. S. Weng, H. Y. Tang, P. C. Ku, and L. H. Lu, “50 mV-Input Batteryless Boost Converter for Thermal Energy Harvesting,†IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1031–1041, 2013.

      [27] M. Alhawari, B. Mohammad, H. Saleh, and M. Ismail, “A survey of thermal energy harvesting techniques and interface circuitry,†Proc. IEEE Int. Conf. Electron. Circuits, Syst., pp. 381–384, 2013.

      [28] X. Zhao, T. Keutel, M. Baldauf, and O. Kanoun, “Energy harvesting for a wireless-monitoring system of overhead high-voltage power lines,†IET Gener. Transm. Distrib., vol. 7, no. 2, pp. 101–107, 2013.

      [29] L. Hou and S. Tan, “A Preliminary Study of Thermal Energy Harvesting for Industrial Wireless Sensor Networks,†pp. 386–390, 2016.

      [30] O. Cetinkaya and O. B. Akan, “Electric-Field Energy Harvesting from Lighting Elements for Battery-Less Internet of Things,†IEEE Access, vol. 5, pp. 7423–7434, 2017.

      [31] J. Katic, S. Rodriguez, and A. Rusu, “A High-Efficiency Energy Harvesting Interface for Implanted Biofuel Cell and Thermal Harvesters,†IEEE Trans. Power Electron., vol. 33, no. 5, pp. 1–1, 2017.

      [32] K. Le, L. Pham-Nguyen, and S. G. Lee, “An ultra-low-voltage-startup circuit for thermal energy harvesting application,†in 2017 7th International Conference on Integrated Circuits, Design, and Verification (ICDV), 2017, pp. 28–32.

      [33] A. M. Abdal-kadhim, “Application of Thermal Energy Harvesting from Low-Level Heat Sources in Powering up WSN Node,†2017.

      [34] M. Yun, E. Ustun, P. Nadeau, and A. Chandrakasan, “Thermal Energy Harvesting for Self-Powered Smart Home Sensors,†pp. 1–4, 2016.

      [35] G. Meyers, “Photovoltaic Dreaming 1875–1905: First Attempts At Commercializing PV,†2014. [Online]. Available: https://cleantechnica.com/2014/12/31/photovoltaic-dreaming-first-attempts-commercializing-pv/.

      [36] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava, “Design considerations for solar energy harvesting wireless embedded systems,†in IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005., 2005, pp. 457–462.

      [37] B. A. Warneke et al., “An autonomous 16 mm3 solar-powered node for distributed wireless sensor networks,†in Proceedings of IEEE Sensors, 2002, vol. 2, pp. 1510–1515 vol.2.

      [38] S. Roundy, B. P. Otis, Y.-H. Chee, J. M. Rabaey, and P. Wright, A 1.9GHz RF Transmit Beacon using Environmentally Scavenged Energy, vol. 4. 2003.

      [39] C. Bernauer et al., Temperature measurement on overhead transmission lines (OHTL) utilizing surface acoustic wave (SAW) sensors. 2007.

      [40] M. M. Abbas et al., “Solar Energy Harvesting and Management in Wireless Sensor Networks,†Int. J. Distrib. Sens. Networks, vol. 2014, 2014.

      [41] Y. Li and R. Shi, “An intelligent solar energy-harvesting system for wireless sensor networks,†Eurasip J. Wirel. Commun. Netw., vol. 2015, no. 1, pp. 1–12, 2015.

      [42] O. Cetinkaya and O. B. Akan, “Electric-Field Energy Harvesting in Wireless Networks,†IEEE Wirel. Commun., vol. 24, no. 2, pp. 34–41, 2017.

      [43] C. Wang, J. Li, Y. Yang, F. Ye, C. Engineering, and S. Brook, “Combining Solar Energy Harvesting with Wireless Charging for Hybrid Wireless Sensor Networks,†vol. 17, no. 3, pp. 560–576, 2016.

      [44] P. Mekikis, E. Kartsakli, A. Antonopoulos, L. Alonso, and C. Verikoukis, “Connectivity Analysis in Clustered Wireless Sensor Networks Powered by Solar Energy,†IEEE Trans. Wirel. Commun., vol. 1276, no. DC, 2018.

      [45] N. D. Sadanandan and A. H. Eltom, “Power donut system laboratory test and data analysis,†IEEE Southeastcon’90. Proceedings., pp. 675–679, 1990.

      [46] P. M. Glatz, P. Meyery, A. Janekz, T. Trathniggx, C. Steger, and R. Weissk, “A measurement platform for energy harvesting and software characterization in WSNs,†2008 1st IFIP Wirel. Days, WD 2008, 2008.

      [47] H. Zangl, T. Bretterklieber, and G. Brasseur, “A feasibility study on autonomous online condition monitoring of high-voltage overhead power lines,†IEEE Trans. Instrum. Meas., vol. 58, no. 5, pp. 1789–1796, 2009.

      [48] M. Zhu, P. C. Baker, N. M. Roscoe, M. D. Judd, and J. Fitch, “Alternative power sources for autonomous sensors in high voltage plant,†2009 IEEE Electr. Insul. Conf. EIC 2009, no. June, pp. 36–40, 2009.

      [49] “30_OTLM-ANGLESKI.pdf.†[Online]. Available: http://www.c-g.si/wp-content/uploads/2016/08/30_OTLM-ANGLESKI.pdf. [Accessed: 12-Feb-2018].

      [50] “Protura [Online].†[Online]. Available: http://www.protura.no/power-line-sensor-0.html. [Accessed: 12-Feb-2018].

      [51] “USi [Online].†[Online]. Available: http://www.usi-power.com/. [Accessed: 12-Feb-2018].

      [52] F. Guo, H. Hayat, and J. Wang, “Energy harvesting devices for high voltage transmission line monitoring,†2011 IEEE Power Energy Soc. Gen. Meet., vol. 43210, pp. 1–8, 2011.

      [53] P. Li, Y. Wen, C. Jia, and X. Li, “A Magnetoelectric Composite Energy Harvester and Power Management Circuit,†IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2944–2951, 2011.

      [54] X. Jiang, Y. Li, and J. Li, Design of a Novel Linear Permanent Magnet Vibration Energy Harvester. 2013.

      [55] P. Zeng and A. Khaligh, “A Permanent-Magnet Linear Motion Driven Kinetic Energy Harvester,†IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5737–5746, 2013.

      [56] S. A. Ghani, M. S. Ahmad Khiar, I. S. Chairul, M. Y. Lada, and N. H. Rahim, “Study of magnetic fields produced by transmission line tower using finite element method (FEM),†2014 2nd Int. Conf. Technol. Informatics, Manag. Eng. Environ., no. 2, pp. 64–68, 2014.

      [57] T. Hosseinimehr and A. Tabesh, “Magnetic Field Energy Harvesting from AC Lines for Powering Wireless Sensor Nodes in Smart Grids,†Ieee Trans. Ind. Electron., vol. 63, no. 8, pp. 4947–4954, 2016.

      [58] F. Lofink et al., “Magnetically driven energy-harvester with monolithically integrated high-energy-density magnets,†19th Int. Conf. Solid-State Sensors, Actuators Microsystems, vol. 1, pp. 351–354, 2017.

      [59] K. W. H, “Piezoelectric energy converter for electronic implants.†Google Patents, 1969.

      [60] P. Glynne-Jones, S. P. Beeby, and N. M. White, “Towards a piezoelectric vibration-powered microgenerator,†IEE Proc. - Sci. Meas. Technol., vol. 148, no. 2, pp. 68–72, 2001.

      [61] M. El-hami et al., “Design and fabrication of a new vibration-based electromechanical power generator,†Sensors Actuators A Phys., vol. 92, no. 1, pp. 335–342, 2001.

      [62] M. Miyazaki et al., “Electric-energy generation using variable-capacitive resonator for power-free LSI: efficiency analysis and fundamental experiment,†in Low Power Electronics and Design, 2003. ISLPED ’03. Proceedings of the 2003 International Symposium on, 2003, pp. 193–198.

      [63] S. Roundy et al., “Improving power output for vibration-based energy scavengers,†IEEE Pervasive Comput., vol. 4, no. 1, pp. 28–36, 2005.

      [64] B. Garcia, J. C. Burgos, and A. M. Alonso, “Transformer tank vibration modeling as a method of detecting winding deformations-part I: Theoretical Foundation,†IEEE Trans. Power Deliv., vol. 21, no. 1, pp. 164–169, 2006.

      [65] B. Garcia, J. C. Burgos, and A. M. Alonso, “Transformer tank vibration modeling as a method of detecting winding deformations-part II: experimental verification,†Power Deliv. IEEE Trans., vol. 21, no. 1, pp. 164–169, 2006.

      [66] Perpetuum Ltd, “Perpetuum PMG17 Datasheet,†2008. [Online]. Available: https://perpetuum.com/. [Accessed: 12-Feb-2018].

      [67] C. B. Williams and R. B. Yates, “Analysis of a micro-electric generator for microsystems,†Sensors Actuators A Phys., vol. 52, no. 1, pp. 8–11, 1996.

      [68] S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, and J. H. Lang, “Vibration-to-electric energy conversion,†IEEE Trans. Very Large Scale Integr. Syst., vol. 9, no. 1, pp. 64–76, 2001.

      [69] M. Goldfarb and L. D. Jones, “On the Efficiency of Electric Power Generation With Piezoelectric Ceramic,†J. Dyn. Syst. Meas. Control, vol. 121, no. 3, pp. 566–571, Sep. 1999.

      [70] N. G. E. and A. A. E. and M. Spector, “A self-powered mechanical strain energy sensor,†Smart Mater. Struct., vol. 10, no. 2, p. 293, 2001.

      [71] R. Amirtharajah and A. P. Chandrakasan, “Self-powered signal processing using vibration-based power generation,†IEEE J. Solid-State Circuits, vol. 33, no. 5, pp. 687–695, 1998.

      [72] H. A. Sodano, D. Leo, and D. Inman, Use of piezoelectric energy harvesting devices for charging batteries. 2003.

      [73] E. Leland, R. White, and P. K Wright, “Energy scavenging power sources for household electrical monitoring,†Feb. 2006.

      [74] S. R. and P. K. Wright, “A piezoelectric vibration based generator for wireless electronics,†Smart Mater. Struct., vol. 13, no. 5, p. 1131, 2004.

      [75] M. Mi, M. H. Mickle, C. Cape, and H. Switf, “RF Energy Harvesting with Multiple Antennas in the Same Space,†IEEE Antennas Propag. Mag., vol. 47, no. 5, pp. 100–105, 2005.

      [76] O. B. Akan, M. T. Isik, and B. Baykal, “Wireless passive sensor networks,†IEEE Commun. Mag., vol. 47, no. 8, pp. 92–99, 2009.

      [77] S. Sudevalayam and P. Kulkarni, “Energy Harvesting Sensor Nodes: Survey and Implications,†IEEE Commun. Surv. Tutorials, vol. 13, no. 3, pp. 443–461, 2011.

      [78] G. Papotto, F. Carrara, A. Finocchiaro, and G. Palmisano, “A 90-nm CMOS 5-Mbps Crystal-Less RF-Powered Transceiver for Wireless Sensor Network Nodes,†IEEE J. Solid-State Circuits, vol. 49, no. 2, pp. 335–346, 2014.

      [79] H. Nishimoto, Y. Kawahara, and T. Asami, “Prototype implementation of ambient RF energy harvesting wireless sensor networks,†in 2010 IEEE Sensors, 2010, pp. 1282–1287.

      [80] Z. Popović, E. A. Falkenstein, D. Costinett, and R. Zane, “Low-Power Far-Field Wireless Powering for Wireless Sensors,†Proc. IEEE, vol. 101, no. 6, pp. 1397–1409, 2013.

      [81] D. Dondi, S. Scorcioni, A. Bertacchini, L. Larcher, and P. Pavan, “An autonomous wireless sensor network device powered by a RF energy harvesting system,†in IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, 2012, pp. 2557–2562.

      [82] D. Pavone, A. Buonanno, M. D’Urso, and F. Della Corte, Design Considerations for Radio Frequency Energy Harvesting Devices, vol. 45. 2012.

      [83] F. Zhang et al., “A batteryless 19μW MICS/ISM-band energy harvesting body area sensor node SoC,†Dig. Tech. Pap. - IEEE Int. Solid-State Circuits Conf., vol. 55, pp. 298–299, 2012.

      [84] A. Al-Khayari, H. Al-Khayari, S. Al-Nabhani, M. M. Bait-Suwailam, and Z. Nadir, “Design of an enhanced RF energy harvesting system for wireless sensors,†in 2013 7th IEEE GCC Conference and Exhibition (GCC), 2013, pp. 479–482.

      [85] M. Al-Lawati, M. Al-Busaidi, and Z. Nadir, “RF energy harvesting system design for wireless sensors,†in International Multi-Conference on Systems, Sygnals & Devices, 2012, pp. 1–4.

      [86] T. Beng Lim, N. M. Lee, and B. K. Poh, “Feasibility study on ambient RF energy harvesting for wireless sensor network,†2013 IEEE MTT-S Int. Microw. Work. Ser. RF Wirel. Technol. Biomed. Healthc. Appl., pp. 1–3, 2013.

      [87] K. M. Farinholt, G. Park, and C. R. Farrar, “RF Energy Transmission for a Low-Power Wireless Impedance Sensor Node,†IEEE Sens. J., vol. 9, no. 7, pp. 793–800, 2009.

      [88] K. Kaushik et al., “Experimental demonstration of multi-hop RF energy transfer,†in 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2013, pp. 538–542.

      [89] J. P. Olds and W. K. G. Seah, “Design of an active radio frequency powered multi-hop wireless sensor network,†in 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2012, pp. 1721–1726.

      [90] N. Sirdeshpande and V. Udupi, “Data delivery scheme using RF-energy harvesting for wireless sensor networks,†in International Conference on Circuits, Communication, Control and Computing, 2014, pp. 285–290.

      [91] X. Lu, P. Wang, D. Niyato, D. I. Kim, Z. Han, and C. Engineering, “Wireless Networks with RF Energy Harvesting : A Contemporary Survey,†vol. 17, no. 2, pp. 1–34, 2015.

      [92] S. Shen, S. Member, C. Chiu, S. Member, and R. D. Murch, “Multiport Pixel Rectenna for Ambient RF Energy Harvesting,†vol. 66, no. 2, pp. 644–656, 2018.

      [93] A. Khemar, A. Kacha, H. Takhedmit, and G. Abib, “Design and experiments of a dual-band rectenna for ambient RF energy harvesting in urban environments,†IET Microwaves, Antennas Propag., vol. 12, no. 1, pp. 49–55, 2018.

      [94] T. D. Nguyen, J. Y. Khan, and D. T. Ngo, “A Self-Sustainable RF Energy Harvesting Algorithm for WSN-Based IoT Applications,†2017.

      [95] J. Ren, J. Hu, D. Zhang, H. Guo, Y. Zhang, and X. S. Shen, “RF Energy Harvesting and Transfer in Cognitive Radio Sensor Networks : Opportunities and Challenges,†no. January, pp. 104–110, 2018.

      [96] X. Zhao, T. Keutel, M. Baldauf, and O. Kanoun, “Energy harvesting for overhead power line monitoring,†Int. Multi-Conference Syst. Sygnals Devices, pp. 1–5, 2012.

      [97] R. Moghe, A. R. Iyer, S. Member, F. C. Lambert, S. Member, and D. M. Divan, “A Low-Cost Wireless Voltage Sensor for Monitoring MV / HV Utility Assets,†vol. 5, no. 4, pp. 2002–2009, 2014.

      [98] C. R. (Rod) Nave, “Electric Field.†[Online]. Available: http://hyperphysics.phy-astr.gsu.edu/hbase/electric/elefie.html. [Accessed: 12-Dec-2017].

      [99] S. Kang, J. Kim, S. Yang, T. Yun, and H. Kim, “Electric field energy harvesting under actual three-phase 765 kV power transmission lines for wireless sensor node,†Electron. Lett., vol. 53, no. 16, pp. 1135–1136, 2017.

      [100] “EMFs Info.†[Online]. Available: http://www.emfs.info/sources/overhead/.

      [101] M. Temoshok, “Relative Surface voltage Gradients of Grouped Conductors,†Trans. Am. Inst. Electr. Eng., vol. 67, no. 2, pp. 1583–1591, 1948.

      [102] G. E. Adams, “Voltage gradients on high-voltage lines,†Electr. Eng., vol. 74, no. 3, p. 198, 1955.

      [103] S. Y. King, “The electric field near bundle conductors,†Proc. IEE - Part C Monogr., vol. 106, no. 10, pp. 200–206, 1959.

      [104] S. Y. King, “An improved solution for the field near bundle conductors,†Electr. Eng. Proc. Inst., vol. 110, no. 6, pp. 1044–1050, 1963.

      [105] A. Marincu, M. Greconici, and S. Mus, “The Electromagnetic Field Around a High Voltage 400 KV Electrical Overhead Lines and the Influence on the Biological Systems,†vol. 18, no. 1, pp. 105–111, 2005.

      [106] R. K. Z. Sahbudin, “Investigation of Electric Potential and Electromagnetic Field for Overhead High Voltage Power Lines in Malaysia.†pp. 1–7, 2010.

      [107] W. T. B. Kelvin, Reprint of Papers on Electrostatics and Magnetism, no. v. 1. Macmillan, 1872.

      [108] P. Hammond, “Electric and magnetic images,†Proc. IEE - Part C Monogr., vol. 107, no. 12, pp. 306–313, 1960.

      [109] M. P. Sarma and W. Janischewskyj, “Electrostatic Field of a System of Parallel Cylindrical Conductors,†IEEE Trans. Power Appar. Syst., vol. PAS-88, no. 7, pp. 1069–1079, 1969.

      [110] M. S. Abou-seada and E. Nasser, “Digital Computer Calculation of the Potential and Its Gradient of a Twin Cylindrical Conductor,†IEEE Trans. Power Appar. Syst., vol. PAS-88, no. 12, pp. 1802–1814, 1969.

      [111] H. Singer, H. Steinbigler, and P. Weiss, “A Charge Simulation Method for the Calculation of High Voltage Fields,†IEEE Trans. Power Appar. Syst., vol. PAS-93, no. 5, pp. 1660–1668, 1974.

      [112] A. Yializis, E. Kuffel, and P. H. Alexander, “An Optimized Charge Simulation Method for the Calculation of High Voltage Fields,†IEEE Trans. Power Appar. Syst., vol. PAS-97, no. 6, pp. 2434–2440, 1978.

      [113] H. Qin, S. Lichun, J. Xingliang, X. Rong, Y. Qianfei, and Z. Shikun, “Calculation of Conductors’ Surface Electric Field of ±800kV UHVDC Transmission Lines with Optimized Charge Simulation Method,†in 2008 International Conference on High Voltage Engineering and Application, 2008, pp. 362–365.

      [114] Q. Li, R. Shuttleworth, G. Zhang, S. M. Rowland, and R. S. Morris, “On calculating surface potential gradient of overhead line conductors,†in 2012 IEEE International Symposium on Electrical Insulation, 2012, pp. 540–544.

      [115] Q. Li, S. M. Rowland, and R. Shuttleworth, “Calculating the surface potential gradient of overhead line conductors,†IEEE Trans. Power Deliv., vol. 30, no. 1, pp. 43–52, 2015.

      [116] H. V. A. Smart, R. Moghe, A. R. Iyer, S. Member, F. C. Lambert, and S. Member, “A Low-Cost Electric Field Energy Harvester for an MV/HV Asset-Monitoring Smart Sensor,†IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1828–1836, 2015.

      [117] T. A. Faculty, R. Moghe, and I. P. Fulfillment, “Smart Sensors for Utility Assets,†no. August, 2012.

      [118] S. Kang, S. Yang, and H. Kim, “Non-intrusive voltage measurement of ac power lines for smart grid system based on electric field energy harvesting,†Electron. Lett., vol. 53, no. 3, pp. 181–183, 2017.

      [119] J. a. van Schalkwyk and G. P. Hancke, “Energy harvesting for Wireless Sensors from electromagnetic fields around overhead power lines,†2012 IEEE Int. Symp. Ind. Electron., pp. 1128–1135, 2012.

      [120] D. Zhao, L. Li, and D. Dai, “Electric field energy harvesting for on-line condition-monitoring device installed on high-voltage transmission tower,†Electron. Lett., vol. 51, no. 21, pp. 1692–1693, 2015.

      [121] M. J. Moser, T. Bretterklieber, H. Zangl, and G. Brasseur, “Strong and Weak Electric Field Interfering: Capacitive Icing Detection and Capacitive Energy Harvesting on a 220-kV High-Voltage Overhead Power Line,†IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2597–2604, 2011.

      [122] K. Chang, S. Kang, K. Park, S. Shin, H. S. Kim, and H. Kim, “Electric field energy harvesting powered wireless sensors for smart grid,†J. Electr. Eng. Technol., vol. 7, no. 1, pp. 75–80, 2012.

      [123] J. C. Rodríguez, B. P. Mcgrath, and R. H. Wilkinson, “Maximum Energy Harvesting from Medium Voltage Electric-Field Energy using Power Line Insulators,†no. October, pp. 1–6, 2014.

      [124] X. Zhao, T. Keutel, M. Baldauf, and O. Kanoun, “Power Module for a Wireless Sensor Node of a Power,†Power, pp. 0–4, 2011.

      [125] H. Kim, D. Choi, S. Gong, and K. Park, “Stray electric field energy harvesting technology using MEMS switch from insulated AC power lines,†Electron. Lett., vol. 50, no. 17, pp. 1236–1237, 2014.

      [126] H. Zangl, T. Bretterklieber, and G. Brasseur, “Energy Harvesting for Online Condition Monitoring of High Voltage Overhead Power Lines,†2008 IEEE Instrum. Meas. Technol. Conf., pp. 1364–1369, 2008.

      [127] J. L. Liu, B. Ye, T. W. Zhan, J. H. Feng, J. De Zhang, and X. X. Wang, “Coaxial capacitive dividers for high-voltage pulse measurements in intense electron beam accelerator with water pulse-forming line,†IEEE Trans. Instrum. Meas., vol. 58, no. 1, pp. 161–166, 2009.

  • Downloads

  • How to Cite

    Yeesparan, S., Baharuddin, M. Z. B., Md Din, N. B., & Haron, M. H. (2018). A Review of Energy Harvesting Methods for Power Transmission Line Monitoring Sensors. International Journal of Engineering & Technology, 7(4.35), 153-161. https://doi.org/10.14419/ijet.v7i4.35.22348