Lift Generation of Compliant Wing Mechanism of Flapping Wing

  • Authors

    • Hamid Yusoff
    • Noor Iswadi Ismail
    • Muhammad Reedzman Mohd Rakmi
    • Shafiq Suhaimi
    • Wirachman Wisnoe
    2018-11-30
    https://doi.org/10.14419/ijet.v7i4.25.22404
  • Flapping Wing, Micro Air Vehicles, Bio-Inspiration, Bio-Mimicry.
  • Flapping wing micro air vehicles are small, lightweight and can fly in a low Reynolds Number environment. They are capable of flying at low Reynolds number environment with amazing agility by imitating natural flyers like bats and have compliant wings while flapping. The primary goal of this study is to design and fabricate the compliant mechanism of flapping wing for improvement of lift performance of a MAV. The test was carried out in an open-air wind tunnel. Furthermore, the compliant wing mechanism is measured based on Angle of attack, Reynolds number and flapping frequency. The result shows, lower angle of attack produces lower lift coefficient while higher angle of attack (40°) produces higher lift coefficient until it reaches stall where the lift decreases drastically. The compliant wing mechanism at Reynolds number 20000 produces higher lift coefficient compared to higher Reynolds number, 36000. The best flapping frequency for the compliant wing mechanism is 9 Hz which is the highest frequency used in this experiment. The trend of the flapping frequency shows that the lift coefficient increases when flapping frequency increases. The highest lift produced for compliant wing mechanism is at 40° angle of attack, 9 Hz flapping frequency and 20000 Reynolds number.

     

     

  • References

    1. [1] Wissa, Y. Tummala, J. E. Hubbard, and M. I. Frecker, “Passively Morphing Ornithopter Wings Constructed Using a Novel Compliant Spine: Design And Testingâ€, Smart Mater. Structure, vol. 21, no. 9, 2012.

      [2] W. R. J. Davis, B. B. Kosicki, D. M. Boroson, and D. F. Kostishack, “Micro Air Vehicles for Optical Surveillanceâ€, Lincoln Lab. J., vol. 9, no. 2, pp. 197–214, 1996.

      [3] H. Yusoff, “Experimental and Numerical Investigations on the Performance of Flexible Skin Flapping Wing for Micro Aerial Vehicle Applicationâ€, 2013.

      [4] Ebrahimi and K. Mazaheri, “Aerodynamic Performance of the Flapping Wingâ€, 2009.

      [5] G. C. H. E. Decroon, M. Perçin, B. D. W. Remes, R. Ruijsink, and C. De Wagter, “The Delfly: Design, Aerodynamics, and Artificial Intelligence of a Flapping Wing Robotâ€, DelFly Des. Aerodyn. Artif. Intell. A Flapping Wing Robot, pp. 1–218, 2015.

      [6] Beasley, “A Study of Planar and Nonplanar Membraneâ€, 2006

      [7] Q. V. Nguyen, N. S. Ha, H. C. Park, and N. S. Goo, “Composite Artificial Wing Mimicking a Beetle Hind-Wingâ€, 10th Int. Conf. Compos. Material, no. January, pp. 1–6, 2011.

      [8] J. R. Usherwood and C. P. Ellington, “The Aerodynamics of Revolving Wings I. Model Hawkmoth Wingsâ€, J. Exp. Biol., vol. 205, no. Pt 11, pp. 1547–1564, 2002.

      [9] N. Phillips, K. Knowles, and N. J. Lawson, “Effect of Wing Planform Shape on The Flow Structures of an Insect-Like Flapping Wing in Hoverâ€, 27th Congr. Int. Counc. Aeronaut. Sci. 2010, ICAS 2010, vol. 2, pp. 1433–1446, 2010.

      [10] T. Van Truong, Q. V. Nguyen, and H. Lee, “Bio-Inspired Flexible Flapping Wings with Elastic Deformationâ€, Aerospace, vol. 4, no. 3, p. 37, 2017.

      [11] H. Wrist, J. P. Hubner, C. O'Neill, and D. Macphee, “Aerodynamic Comparisons of Membrane Wings with Cambered and Flat Frames at Low Reynolds Numberâ€, 2016.

      [12] H. Aono, S. K. Chimakurthi, C. E. S. Cesnik, H. Liu, and W. Shyy, “Computational Modeling of Spanwise Flexibility Effects on Flapping Wing Aerodynamicsâ€, 47th AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo, no. January, p. 18, 2009.

      [13] S. Kota, J.A. Hetrick, R. Osborn, C. Tilmann “Design and Application of Compliant Mechanisms for Morphing Aircraft Structuresâ€, no. August 2003, p. 24, 2003.

      [14] S. Kota, R. Osborn, G. Ervin, D. Maric, P. Flick, and D. Paul, “Mission Adaptive Compliant Wing – Design, Fabrication and Flight Test Mission Adaptive Compliant Wingâ€, Rtompavt, pp. 1–19, 2006.

      [15] L. Shili, G. Wenjie, and L. Shujun, “Optimal Design of Compliant Trailing Edge for Shape Changingâ€, Chinese J. Aeronaut., vol. 21, no. 2, pp. 187–192, 2008.

      [16] Mueller, H. A. Bruck, and S. K. Gupta, “Measurement of Thrust and Lift Forces Associated with Drag of Compliant Flapping Wing for Micro Air Vehicles Using a New Test Stand Designâ€, Exp. Mech., vol. 50, no. 6, pp. 725–735, 2010.

  • Downloads

  • How to Cite

    Yusoff, H., Iswadi Ismail, N., Reedzman Mohd Rakmi, M., Suhaimi, S., & Wisnoe, W. (2018). Lift Generation of Compliant Wing Mechanism of Flapping Wing. International Journal of Engineering & Technology, 7(4.25), 93-98. https://doi.org/10.14419/ijet.v7i4.25.22404