Assistive Robot Simulator for Multi-Objective Evolutionary Algorithm Application

  • Authors

    • Z. Mohamed
    • M. A Ayub
    • M. H.M Ramli
    • M. S.B Shaari
    • S. Khusairi
    2018-11-30
    https://doi.org/10.14419/ijet.v7i4.27.22506
  • Robot arm simulator, Optimization, Multi-objective evolutionary algorithm, Genetic algorithm, Neural network.
  • Abstract

    This paper presents a new assistive robot simulator for multi-objective optimization application. The main function of the simulator is to simulate the trajectory of the robot arm when it moves from initial to a goal position in optimized manner. A multi-objective evolutionary algorithm (MOEA) is utilized to generate the robot arm motion optimizing three different objective function; optimum time, distance, and high stability. The generated neuron will be selected from the Pareto optimal based on the required objectives function. The robot will intelligently choose the best neuron for a specific task. For example, to move a glass of water required higher stability compare to move an empty mineral water bottle. The simulator will be connected to the real robot to test the performance in real environment. The kinematics, mechatronics and the real robot specification are utilized in the simulator. The performance of the simulator is presented in this paper.

     

     

  • References

    1. [1] H. Dallali et al., (2013) “Development of a dynamic simulator for a compliant humanoid robot based on a symbolic multibody approach,†2013 IEEE Int. Conf. Mechatronics, ICM 2013, pp. 598–603.

      [2] P. Shahverdi and M. T. Masouleh, (2017) “A simple and fast geometric kinematic solution for imitation of human arms by a NAO humanoid robot,†4th RSI Int. Conf. Robot. Mechatronics, ICRoM 2016, pp. 572–577.

      [3] J. L. Lima, J. C. Gonçalves, P. G. Costa, and A. P. Moreira, (2008) “Humanoid robot simulation with a joint trajectory optimized controller,†IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA, pp. 986–993.

      [4] R. Saegusa, G. Metta, and G. Sandini, (2009) “Active Learning for Multiple Sensorimotor Coordination Based on State Con fi dence,†pp. 2598–2603.

      [5] B. Akgün, N. Daǧ, T. Bilal, I. Atil, and E. Şahin, (2009) “Unsupervised learning of affordance relations on a humanoid robot,†2009 24th Int. Symp. Comput. Inf. Sci. Isc. 2009, pp. 254–259.

      [6] T. Ogura, K. Okada, and M. Inaba, (2007) “Realization of dynamics simulator embedded robot brain for humanoid robots,†Proc. - IEEE Int. Conf. Robot. Autom., no. April, pp. 2175–2180.

      [7] X. Deng, J. Wang, and W. Zhu, “Study on Simulation for Humanoid Robot,†2008 Int. Conf. Intell. Comput. Technol. Autom., pp. 732–735, 2008.

      [8] L. Li, X. Long, and M. A. Gennert, (2016) “BiRRTOpt: A combined sampling and optimizing motion planner for humanoid robots,†IEEE-RAS Int. Conf. Humanoid Robot., pp. 469–476.

      [9] R. Crespo, R. García, and S. Quiroz, (2016) “Virtual reality simulator for robotics learning,†Proc. 2015 Int. Conf. Interact. Collab. Blended Learn. ICBL 2015, no. December, pp. 61–65.

      [10] Y. Nakanishi, K. Hongo, J. Urata, I. Mizuuchi, and M. Inaba, (2010) “Muscle geometric topology estimation based on muscle length - Joint angle nonlinearity in tendon-driven robot systems,†2010 10th IEEE-RAS Int. Conf. Humanoid Robot. Humanoids 2010, pp. 263–268.

      [11] T. Choi, D. Park, K. Chung, D. H. Kim, K. T. Park, and J. Kyung, (2012) “Industrial dual-arm robot simulator implementation,†2012 9th Int. Conf. Ubiquitous Robot. Ambient Intell. URAI 2012, no. Urai, pp. 553–554.

      [12] W. M. H. W. Kadir, R. E. Samin, and B. S. K. Ibrahim, (2012) “Internet controlled robotic arm,†Procedia Eng., vol. 41, no. Iris, pp. 1065–1071.

      [13] S. Charoenseang, A. Srikaew, D. M. Wilkes, and K. Kawamura, (1998) “Integrating visual feedback and force feedback in 3-D collision avoidance for a dual-arm humanoid robot,†Proc. IEEE Int. Conf. Syst. Man Cybern., vol. 4, pp. 3406–3411.

      [14] M. A. K. Yusoff, R. E. Samin, and B. S. K. Ibrahim, (2012) “Wireless mobile robotic arm,†Procedia Eng., vol. 41, no. Iris, pp. 1072–1078.

      [15] I. W. Park, Y. D. Hong, B. J. Lee, and J. H. Kim, (2012) “Generating optimal trajectory of humanoid arm that minimizes torque variation using differential dynamic programming,†Proc. - IEEE Int. Conf. Robot. Autom., pp. 1316–1321.

      [16] G. Tong, Z. Shao, H. He, and X. Chen, (2008) “A HiFi 3D simulator for humanoid robot soccer,†Proc. 2008 IEEE Int. Conf. Inf. Autom. ICIA 2008, pp. 804–808.

      [17] L. Sciavicco and B. Siciliano, (2001) Modelling and Control of Robot Manipulators. London: Springer.

      [18] R. N. Jazar, (2007) Theory of Applied Robotics : Kinematics, Dynamics and Control. New York: Springer.

      [19] Z. Mohamed and G. Capi, (2012) “Development of a New Mobile Humanoid Robot for Assisting Elderly People,†Procedia Eng., vol. 41, no. Iris, pp. 345–351.

      [20] D. Xu, C. a. Acosta Calderon, J. Q. Gan, H. Hu, and M. Tan, (2005) “An analysis of the inverse kinematics for a 5-DOF manipulator,†Int. J. Autom. Comput., vol. 2, no. 2, pp. 114–124.

      [21] M. Spong, F. Lewis, and C. Abdallah, (1993) "Robot Control : Dynamics, Motion Planning, and Analysys" New York: IEEE Press.

      [22] Z. Mohamed, M. Kitani, and G. Capi, (2013) “Humanoid Robot Arm Performance Optimization using Multi Objective Evolutionary Algorithm,†Int. J. Control Autom. Syst., vol. 10, no. 2, pp. 1–8.

      [23] D. J. Montana and L. Davis, (1989) “Training Feedforward Neural Networks Using Genetic Algorithms,†in Eleventh International Joint Conferences on Artificial Intelligence, pp. 762–767.

      [24] G. Capi and K. Doya, (2006) “Application of evolutionary computation for efficient reinforcement learning,†Appl. Artif. Intell., vol. 20, no. 1, pp. 1–20.

      [25] T. Belding, (1995) “The Distributed Genetic Algorithm Revisited,†in Proceedings of the 6th International Conference on Genetic Algorithms, pp. 114–121.

      [26] E. Cantu-paz, (2000) “Topologies , Migration Rates , and Multi-Population Parallel Genetic Algorithms,†in Proceedings of the Genetic and Evolutionary Computation Conference, pp. 91–98.

  • Downloads

  • How to Cite

    Mohamed, Z., A Ayub, M., H.M Ramli, M., S.B Shaari, M., & Khusairi, S. (2018). Assistive Robot Simulator for Multi-Objective Evolutionary Algorithm Application. International Journal of Engineering & Technology, 7(4.27), 153-157. https://doi.org/10.14419/ijet.v7i4.27.22506

    Received date: 2018-11-30

    Accepted date: 2018-11-30

    Published date: 2018-11-30