Effect of Multiplication and Absorption Layers Width on Avalanche Multiplication Gain in InGaAs/InP Avalanche Photodiode

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    The separate absorption, grading, charge, and multiplication (SAGCM) InGaAs/InP avalanche photodiodes (ADPs) are widely used in long distance, high bit rate optical communication system due to their high performance and response to optical fiber wavelength spectrum. In this work, the effect of multiplication layer width (MLW) and absorption layer width (ALW) on APD performance is studied and investigated. Silvaco TCAD software is used as simulation tools to simulate a precise model of InGaAs/InP APD and analyze its, performance under an illuminated condition. As such, three different ALW with various MLW has been simulated while the structure values and material parameters are kept constant. It was found that in the APD with smaller MLW, the distance between the punch-through voltage and the breakdown voltage can be maximized. Therefore, the operation region of APD will be extended. In addition, the multiplication gain is obtained from the photocurrent and primary current by taking the APD collection efficiency effect under the consideration.


  • Keywords


    : Multiplication gain, Avalanche photodiodes, Punch-through voltage, Avalanche breakdown

  • References


      [1] Bhattacharya, P. (2009). Semiconductor optoelectronic devices. New Delhi: Prentice Hall India.

      [2] Fukuda, M. (1999). Optical semiconductor devices. New York [u.a.]: Wiley.

      [3] Saleh, B. and Teich, M. (2007). Fundamentals of photonics. Hoboken,NJ: Wiley.

      [4] Senior, J. and Jamro, M. (2009). Optical fiber communications. Harlow, England: Financial Times/Prentice Hall.

      [5] Xu, J., Chen, X., Wang, W. and Lu, W. (2016). Extracting dark current components and characteristics parameters for InGaAs/InP avalanche photodiodes. Infrared Physics & Technology, 76, pp.468-473.

      [6] Parks, J., Smith, A., Brennan, K. and Tarof, L. (1996). Theoretical study of device sensitivity and gain saturation of separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes. IEEE Transactions on Electron Devices, 43(12), pp.2113-2121.

      [7] Zeng, Q., Wang, W., Wen, J., Xu, P., Hu, W., Li, Q., Li, N. and Lu, W. (2014). Dependence of dark current on carrier lifetime for InGaAs/InP avalanche photodiodes. Optical and Quantum Electronics, 47(7), pp.1671-1677

      [8] Susa, N., Nakagome, H., Ando, H. and Kanbe, H. (1981). Characteristics in InGaAs/InP avalanche photodiodes with separated absorption and multiplication regions. IEEE Journal of Quantum Electronics, 17(2), pp.243-250.

      [9] Zhao, Y., Zhang, D., Qin, L., Tang, Q., Wu, R., Liu, J., Zhang, Y., Zhang, H., Yuan, X. and Liu, W. (2011). InGaAs–InP avalanche photodiodes with dark current limited by generation-recombination. Optics Express, 19(9), p.8546.

      [10] M. Woods, W. Johnson, and M. Lampert, “Use of a Schottky barrier to measure impact ionization coefficients in semiconductors,”Solid-State Electronics, vol. 16, no. 3, pp. 381–394, 1973

      [11] Ma, J., Bai, B., Wang, L., Tong, C., Jin, G., Zhang, J. and Pan, J. (2016). Design considerations of high-performance InGaAs/InP single-photon avalanche diodes for quantum key distribution. Applied Optics, 55(27), p.7497.

      [12] Acerbi, F., Tosi, A. and Zappa, F. (2013). Growths and diffusions for InGaAs/InP single-photon avalanche diodes. Sensors and Actuators A: Physical, 201, pp.207-213.

      [13] C. Ma, Characterization and modelling of SAGCM InP/InGaAs avalanche photodiodes for multigigabit optical fiber communications. Ottawa: National Library of Canada, 1996.

      [14] H. T. J. Meier, Design, characterization and simulation of avalanche photodiodes. Zürich: ETH, 2011.

      [15] Saleh, M., Hayat, M., Sotirelis, P., Holmes, A., Campbell, J., Saleh, B. and Teich, M. (2001). Impact-ionization and noise characteristics of thin III-V avalanche photodiodes. IEEE Transactions on Electron Devices, 48(12), pp.2722-2731.

      [16] Welch, D., Kish, F., Melle, S., Nagarajan, R., Kato, M., Joyner, C., Pleumeekers, J., Schneider, R., Back, J., M. and Mehuys, D. (2007). Large-Scale InP Photonic Integrated Circuits: Enabling Efficient Scaling of Optical Transport Networks. IEEE Journal of Selected Topics in Quantum Electronics, 13(1), pp.22-31.

      [17] P. S. A. Roslan, P. J. Ker, I. Ahmad, J. Pasupuleti, and P. Z. Fam, “Modeling and simulation of InAs photodiode on electric field profile and dark current characteristics,” 2016 IEEE International Conference on Semiconductor Electronics (ICSE), 2016.

      [18] O'Reilly, J. and Fyath, R. (1988). Analysis of the influence of dark current on the performance of optical receivers employing superlattice APDs. IEE Proceedings J Optoelectronics, 135(2), p.109.

      [19] Fyath, R. and O'Reilly, J. (1989). Performance degradation of APD-optical receivers due to dark current generated within the multiplication region. Journal of Lightwave Technology, 7(1), pp.62-67.

      [20] Ma, C., Deen, M. and Tarof, L. (1995). Multiplication in separate absorption, grading, charge, and multiplication InP-InGaAs avalanche photodiodes. IEEE Journal of Quantum Electronics, 31(11), pp.2078-2089.

      [21] An, S. and Deen, M. (2000). Low-frequency noise in single growth planar separate absorption, grading, charge, and multiplication avalanche photodiodes. IEEE Transactions on Electron Devices, 47(3), pp.537-543.

      [22] Chen, Y., Wun, J., Wu, S., Chao, R., Huang, J., Jan, Y., Chen, H., Ni, C., Chang, H., Chou, E. and Shi, J. (2018). Top-Illuminated In0.52Al0.48As-Based Avalanche Photodiode With Dual Charge Layers for High-Speed and Low Dark Current Performances. IEEE Journal of Selected Topics in Quantum Electronics, 24(2), pp.1-8.

      [23] Tien-Pei Lee, Burrus, C. and Dentai, A. (1981). InGaAs/InP p-i-n photodiodes for lightwave communications at the 0.95-1.65 µm wavelength. IEEE Journal of Quantum Electronics, 17(2), pp.232-238.

      [24] P. Yuan, K. Anselm, C. Hu, H. Nie, C. Lenox, A. Holmes, B. Streetman, J. Campbell, and R. Mcintyre, “A new look at impact ionization-Part II: Gain and noise in short avalanche photodiodes,”IEEE Transactions on Electron Devices, vol. 46, no. 8, pp. 1632–1639, 1999.

      [25] P. Yuan, C. Hansing, K. Anselm, C. Lenox, H. Nie, A. Holmes, B. Streetman, and J. Campbell, “Impact ionization characteristics of III-V semiconductors for a wide range of multiplication region thicknesses,” IEEE Journal of Quantum Electronics, vol. 36, no. 2, pp. 198–204, 2000.

      [26] G. M. Williams, M. Compton, D. A. Ramirez, M. M. Hayat, and A. S. Huntington, “Multi-Gain-Stage InGaAs Avalanche Photodiode With Enhanced Gain and Reduced Excess Noise,” IEEE Journal of the Electron Devices Society, vol. 1, no. 2, pp. 54–65, 2013.

      [27] R. Fyath and J. Oreilly, “Performance degradation of APD-optical receivers due to dark current generated within the multiplication region,” Journal of Lightwave Technology, vol. 7, no. 1, pp. 62–67, 1989.

      [28] J. Chen, Z. Zhang, M. Zhu, J. Xu, and X. Li, “Optimization of InGaAs/InAlAs Avalanche Photodiodes,” Nanoscale Research Letters, vol. 12, no. 1, 2017.

      [29] J. Tu, Y. Zhao, K. Wen, Q. Li, and Y. Li, “The Determination of Unity Gain for InGaAs/InP Avalanche Photodiodes With Excess Noise Measurements,” IEEE Photonics Technology Letters, vol. 29, no. 8, pp. 671–674, 2017.

      [30] M. H. Mun, S. W. Jung, H. Kang, D. Kim, H. J. Kim, S. H. Lee, and H. Park, “Design and Simulation Result of N Substrate Reverse Type Avalanche Photodiode (APD),” IEEE Transactions on Nuclear Science, vol. 56, no. 3, pp. 1046–1050, 2009.

      [31] J. K. Park and I. Yun, “Modeling of avalanche gain for high-speed InP/InGaAs avalanche photodiodes,” 2008 IEEE International Conference on Electron Devices and Solid-State Circuits, 2008.

      [32] G.-F. D. Betta, L. Pancheri, M. Boscardin, G. Paternoster, C. Piemonte, N. Cartiglia, F. Cenna, and M. Bruzzi, “Design and TCAD simulation of double-sided pixelated low gain avalanche detectors,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 796, pp. 154–157, 2015.

      [33] Silvaco Standard Simulation, Two-Dimensional Device Simulation of InGaAs/InP Avalanche Photodiode, 2014

      [34] V. Palankovski, Analysis and simulation of heterostructure devices. Place of publication not identified: Springer Verlag Gmbh, 2012.

      [35] ATLAS User’s Manual—Device Simulation Software Silvaco, 2016

      [36] Marshall, A., David, J. and Tan, C. Impact Ionization in InAs Electron Avalanche Photodiodes. IEEE Transactions on Electron Devices, 57(10), pp.2631-2638. 2010

      [37] Saleh, M., Hayat, M., Sotirelis, P., Holmes, A., Campbell, J., Saleh, B., & Teich, M. (2001). Impact-ionization and noise characteristics of thin III-V avalanche photodiodes. IEEE Transactions on Electron Devices,48(12), 2722-2731. doi:10.1109/16.974696

      [38] S. L. Chuang, Physics of photonic devices. Hoboken, NJ: John Wiley & Sons, 2009.

      [39] Jackson, J. C., Hurley, P. K., Lane, B., Mathewson, A., & Morrison, A. P. (2002). Comparing leakage currents and dark count rates in Geiger-mode avalanche photodiodes. Applied Physics Letters,80(22), 4100-4102. doi:10.1063/1.1483119

      [40] R. Yeats and S. H. Chiao, “Leakage current in InGaAsP avalanche photodiodes,” Applied Physics Letters, vol. 36, no. 2, pp. 167–170, 1980.


 

View

Download

Article ID: 22909
 
DOI: 10.14419/ijet.v7i4.35.22909




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.