Crime Prediction in the Era of Big

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    Big data has become in recent years the fashion for all companies and academic entities. The appearance of this field of research and discussion on a global scale is due to the development of society where each individual alone produces a large size of data of several types including videos, text, audio, logs, database etc. that are structured or unstructured that even this individual alone cannot be found there. If we cite social media, for example, we find unimaginable data.

    The fight against crime remains a priority for all societies and deploys enormous human, financial and technological resources to minimize this scourge.

    If we can know where, who and when with sufficient time lag, we can reach a goal of “zero crimes". Hence the need for a crime prediction system.



  • Keywords

    Big data; prediction; crime; machine learning.

  • References

      [1] J. Chan, L. Bennett Moses. « Is Big Data challenging criminology? », Theoretical criminology, vol. 20, no 1, p. 21–39, 2016. doi : 10.1177/1362480615586614

      [2] B. Cavadas, P. Branco, S. Pereira. « Crime Prediction Using Regression and Resources Optimization », in Progress in Artificial Intelligence, 2015, p. 513‑524. doi : 10.1007/978-3-319-23485-4_51

      [3] M. S. Gerber. « Predicting crime using Twitter and kernel density estimation », Decision Support Systems, vol. 61, p. 115–125, 2014. doi : 10.1016/j.dss.2014.02.003

      [4] M. A. Boni, M. S. Gerber. « Predicting crime with routine activity patterns inferred from social media », in 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2016, p. 001233‑001238. doi : 10.1109/SMC.2016.7844410

      [5] M. Al Boni, M. S. Gerber. « Area-Specific Crime Prediction Models », in Machine Learning and Applications (ICMLA), 2016 15th IEEE International Conference on, 2016, p. 671–676. doi : 10.1109/ICMLA.2016.0118

      [6] M. Al Boni, M. S. Gerber. « Automatic Optimization of Localized Kernel Density Estimation for Hotspot Policing », in Machine Learning and Applications (ICMLA), 2016 15th IEEE International Conference on, 2016, p. 32–38. doi : 10.1109/ICMLA.2016.0015

      [7] A. Newton, M. Felson. « Editorial: crime patterns in time and space: the dynamics of crime opportunities in urban areas », Crime Science, vol. 4, no 1, p. 11, juin 2015. doi : 10.1186/s40163-015-0025-6

      [8] S. Bergamaschi, L. Po, S. Sorrentino. « Comparing Topic Models for a Movie Recommendation System », p. 12. doi : 10.5220/0004835601720183

      [9] A. G. Ferguson, « Big Data and Predictive Reasonable Suspicion », 2014.

      [10] L. B. Moses, J. Chan. « Using big data for legal and law enforcement decisions: Testing the new tools », UNSWLJ, vol. 37, p. 643, 2014.

      [11] G. Dreyfus. Réseaux de neurones : méthodologie et applications ; [prévision, data mining, bio-ingénierie, reconnaissance de formes, robotique et commande de processus], 2. Éd. Paris : Eyrolles, 2004.

      [12] W. L. Perry, B. McInnis, C. C. Price, S. C. Smith, J. S. Hollywood. Predictive Policing: The Role of Crime Forecasting in Law Enforcement Operations. Rand Corporation, 2013.




Article ID: 23252
DOI: 10.14419/ijet.v7i4.32.23252

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.