A Modification of Conjugate Gradient Method using Strong Wolfe Line Search

  • Authors

    • Abba V. Mandara
    • Mustafa Mamat
    • M. Y. Waziri
    • Mohamad A fendee Mohamed
    https://doi.org/10.14419/ijet.v7i3.28.23411
  • Optimizations, Conjugate Gradient, Line Search.
  • Abstract

    In this paper, a proposed modification of conjugate gradient (CG) coefficient  method to solve unconstrained optimization problems is presented. A strong - Wolfe line search is used to generate  with sufficient descent direction and global convergence property is established. Numerical result are also presented based on the number of iterations and CPU times, the results have shown that the modified  performs better compare to other CG methods.

     

     

     
  • References

    1. [1] M. J. D. Powel (1986), Convergence properties of algorithms for nonlinear optimization, SIAM Review 28 (4), 487 – 500.

      [2] N. Andrei (2008), An unconstrained optimization test functions collection, Adv. Mod. and Optimization 10, 147 – 161.

      [3] E. Dolan and J.J. More, Benchmarking optimization software with performance proï¬le, Maths Prog. 91(2), 201 – 213 (2002).

      [4] N. Andrei, 40 conjugate gradients algorithms for unconstrained optimization, Bull. Malays. Math. Sci. Soc. 34(2), 319 – 330 (2011).

      [5] W. W. Hager and H.C. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM Journal of Optimization 16, 170 – 192 (2005).

      [6] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Standard. 49, 409 – 436 (1952).

      [7] M. Rivaie, M. Fauzi, M. Mamat, and M. Ismail. A new class of conjugate gradient coefficient with global convergence properties, AIP Con. Pro. 1482, 486-491 (2012).

      [8] N. Hajar, M .Mamat, M. Rivaie, and I. Jusoh. A new type of descent conjugate gradient method with exact line search, AIP Con. Pro. 1739, 1-8 (2016).

      [9] L. Armijo, Minimization of functions having Lipschitz continuous partial derivatives, Pacific J. Math. 16, 1- 3 (1966).

      [10] Y. Yuan and W. Sun, Theory and methods of optimization, Science Press of China, (1999).

      [11] Y. Liu and C. Storey. Efficient generalised conjugate gradient algorithms, J. Comp. Appl. Math. 69, 129 – 137 (1992).

      [12] P. Wolfe, convergence conditions for descent methods, SIAM Rev. 13(2), 226 – 235 (1971).

      [13] R. Fletcher and C. Reeves. Function minimization by conjugate gradients, Comput. J. 7, 149 – 154 (1964).

      [14] E. Polak and G. Ribiere, Rev. Francaise Informat Recherche Operationelle, Mathematical Modeling and Numerical Analysis 3E(16), 35 – 43 (1969).

      [15] M.K. Dauda, Mamat, M., Waziri, M.Y., Ahmad, F., & Mohammad, F.S. (2016). Inexact CG method via SR1 update for solving systems of nonlinear equations, Far East Journal of Mathematical Sciences 100(11), 1787-1804.

      [16] N.H.A. Ghani, Rivaie, M., & Mamat, M. (2016). A modified form of conjugate gradient method for unconstrained optimization problems, AIP Conference Proceedings, 1739(1), 1-8.

      [17] M. Hamoda, Rivaie, M., Mamat, M., & Salleh, Z. (2015). A new nonlinear conjugate gradient coefficient for unconstrained optimization, Applied Mathematical Sciences 9(37–40), 1813–1822.

      [18] S. Shoid, Mohd. Rivaie, M., & Mustafa, Mamat. (2016). A new convergent conjugate gradient method under the exact line search, AIP Conference Proceedings, 1660(1), 1-8.

      [19] A.A. Goldstein, On steepest descent, SIAM J. Control 3, 147 – 151 (1965)

      [20] K.U. Kamfa, Mamat, M., Abashar, A., Rivaie, M., Ghazali, P.L.B., & Salleh, Z. (2015). Another modified conjugate gradient coefficient with global convergence properties. Applied Mathematical Sciences 9(37 – 40), 1833 – 1844.

      [21] Y.H. Dai., & Y. Yuan. (2002). A note on the nonlinear conjugate gradient method, Journal Compt. Appl. Math. 18(6), 575 – 582.

      [22] M. Rivaie, Mamat, M., & Abashar, A. (2015). A new class of nonlinear conjugate gradient coefficients with exact and inexact line searches, Applied Mathematics and Computation 268, 1152 – 1163.

      [23] M.K. Dauda, Mustafa Mamat, M.Y. Waziri, Fadhilah Ahmad and Fatma Susilawati Mohamad (2016). Improved Quasi-Newton method via PSB update for solving systems of nonlinear equations, AIP Conference Proceedings 1782(1), 1-6 (2016).

      [24] G. Zoutendijk, Nonlinear programming computational methods. Integer and Nonlinear Programming 1970, 37 – 86.

      [25] Abidin, N.Z., Mamat, M., Dangerfield, B., Zulkefli, J.H., Baten, Md. A., Wibowo, A. (2014). Combating obesity through healthy eating behavior: A call for system dynamics optimization, Plos One 9(12), 1-17.

      [26] Mamat, M., Subiyanto, Kartono, A. (2013). Mathematical model of cancer treatments using immunotheraphy, chemotheraphy and biochemotheraphy, Applied Mathematical Sciences 7(5-8), 247-261.

      [27] Mamat, M., Zulkifli, N.F., Deraman, S.K., Mohamad Noor, N.M. (2012), Fuzzy linear programming approach in balance diet planning for eating disorder and disease-related lifestyle, Applied Mathematical Sciences 6(101-104), 5109-5118.

      [28] Mamat, M., Deraman, S.K., Noor, N.M.M., Rokhayati, Y. (2012), Diet problem and nutrient requirement using fuzzy linear programming approach, Asian Journal of Applied Sciences 5(1), 52-59.

      [29] Mamat, M., Rokhayati, Y., Noor, N.M.M., Mohd, I. (2011), Optimizing human diet problem with fuzzy price using fuzzy linear programming approach, Pakistan Journal of Nutrition 10(6), 594-598.

  • Downloads

  • How to Cite

    V. Mandara, A., Mamat, M., Y. Waziri, M., & fendee Mohamed, M. A. (2018). A Modification of Conjugate Gradient Method using Strong Wolfe Line Search. International Journal of Engineering & Technology, 7(3.28), 163-167. https://doi.org/10.14419/ijet.v7i3.28.23411

    Received date: 2018-12-08

    Accepted date: 2018-12-08