A New Hybrid PRP-MMR Conjugate Gradient Methods with Exact Line Search

  • Authors

    • Mouiyad Bani Yousef
    • Mustafa Mamat
    • Mohd Rivaie
    https://doi.org/10.14419/ijet.v7i3.28.23428
  • hybrid conjugate gradient method, sufficient descent property, global convergence, unconstrained optimization, large-scale optimization.
  • Abstract

    Conjugate gradient (CG) methods are an important class of methods for unconstrained optimization, especially for large-scale problems. Recently, they have been much studied. In this paper, we propose a new hybrid conjugate gradient method for solving unconstrained optimization problems, which is a convex combination of an earlier version of Polak- Ribiere and Polyak (PRP) and a recent modification of Mouiyad Bani Yousef (MMR) method. The proposed method is proved globally convergent under exact line search. This is supported by the results of the numerical tests. The numerical performance of the new hybrid CG method is reported to be more efficient compared with previous CG methods. Numerical experiments are made for two combinations of the new hybrid method and the PRP conjugate gradient method. The initial results show that one of the hybrid methods is especially effective for the given test problems.

     


     

     

  • References

    1. [1] Nocedal, J. (1996). Conjugate gradient methods and nonlinear optimization. In Loyce M. Adams, John Lawrence Nazareth (Eds.), Linear and Nonlinear Conjugate Gradient-Related Methods. Pennsylvania: Society for Industrial and Applied Mathematics, pp. 9-23.

      [2] Polak, E. (2012). Optimization: Algorithms and consistent approximations. Springer Science and Business Media.

      [3] Polyak, B. T. (1969). The conjugate gradient method in extreme problems. USSR Comp. Math. Phys., 9, 94-112.

      [4] Polak, E., & Ribiere, G. (1969). Note sur la convergence de méthodes de directions conjuguées. Revue française d'informatique et de recherche opérationnelle. Série Rouge, 3(16), 35-43.

      [5] Fletcher, R., & Reeves, C. M. (1964). Function minimization by conjugate gradients. Computer Journal, 7(2), 149-154.

      [6] Wei, Z., Yao, S., & Liu, L. (2006). The convergence properties of some new conjugate gradient methods. Applied Mathematics and Computation, 183(2), 1341-1350.

      [7] ‘Aini, N., Rivaie, M., & Mamat, M. (2016). A modified conjugate gradient coefficient with inexact line search for unconstrained optimization. AIP Conference Proceedings, 1787(1), 1-6.

      [8] Liu, Y., & Storey, C. (1991). Efficient generalized conjugate gradient algorithms, part 1: Theory. Journal of Optimization Theory and Applications, 69(1), 129-137.

      [9] Fletcher, R. (2013). Practical methods of optimization. John Wiley and Sons.

      [10] Dai, Y. H., & Yuan, Y. (1999). A nonlinear conjugate gradient method with a strong global convergence property. SIAM Journal on Optimization, 10(1), 177-182.

      [11] Zoutendijk, G. (1970). Nonlinear programming, computational methods. In J. Abadie (Ed.), Integer and Nonlinear Programming. Amsterdam: North-Holland, pp. 37-86.

      [12] Al-Baali, M. (1985). Descent property and global convergence of the Fletcher—Reeves method with inexact line search. IMA Journal of Numerical Analysis, 5(1), 121-124.

      [13] Touati-Ahmed, D., & Storey, C. (1990). Efficient hybrid conjugate gradient techniques. Journal of Optimization Theory and Applications, 64(2), 379-397.

      [14] Gilbert, J. C., & Nocedal, J. (1992). Global convergence properties of conjugate gradient methods for optimization. SIAM Journal on Optimization, 2(1), 21-42.

      [15] Powell, M. J. D. (1977). Restart procedures for the conjugate gradient method. Mathematical Programming, 12(1), 241-254.

      [16] Hager, W. W., & Zhang, H. (2005). A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM Journal on Optimization, 16(1), 170-192.

      [17] Andrei, N. (2009). Accelerated conjugate gradient algorithm with finite difference Hessian/vector product approximation for unconstrained optimization. Journal of Computational and Applied Mathematics, 230(2), 570-582.

      [18] Sofi, A. Z. M., Mamat, M., & Mohd, I. (2013). An improved BFGS search direction using exact line search for solving unconstrained optimization problems. Applied Mathematical Science, 7, 73-85.

      [19] Abashar, A., Mamat, M., Rivaie, M., & Mohd, I. (2017). Global convergence properties of a new class of conjugate gradient method for unconstrained optimization.

      [20] Jusoh, I., Mamat, M., & Rivaie, M. (2014). A new edition of conjugate gradient methods for large-scale unconstrained optimization. International Journal of Mathematical Analysis, 8, 2277-2291.

      [21] Hajar N, Mamat M, Rivaie M, Jusoh I. (2016). A new type of descent conjugate gradient method with exact line search. AIP Conference Proceedings, 1739(1), 1-8.

      [22] Rivaie, M., Mamat, M., June, L. W., & Mohd, I. (2012). A new class of nonlinear conjugate gradient coefficients with global convergence properties. Applied Mathematics and Computation, 218(22), 11323-11332.

      [23] Yuan, G., Lu, S., & Wei, Z. (2010). A line search algorithm for unconstrained optimization. Journal of Software Engineering and Applications, 3(5), 503-509.

      [24] Andrei, N. (2008). Another hybrid conjugate gradient algorithm for unconstrained optimization. Numerical Algorithms, 47(2), 143-156.

      [25] Andrei, N. (2008). A hybrid conjugate gradient algorithm for unconstrained optimization as a convex combination of Hestenes-Stiefel and Dai-Yuan. Studies in Informatics and Control, 17(1), 57-.

      [26] Andrei, N. (2009). Hybrid conjugate gradient algorithm for unconstrained optimization. Journal of Optimization Theory and Applications, 141(2), 249-264.

      [27] Andrei, N. (2010). Accelerated hybrid conjugate gradient algorithm with modified secant condition for unconstrained optimization. Numerical Algorithms, 54(1), 23-46.

      [28] Mouiyad-Rivaie-Mustafa (MMR). (2018). A new conjugate gradient method with exact line search. Accepted to be published in (A New Conjugate Gradient Method with Exact Line Search).

      [29] Yuan, G., Lu, S., & Wei, Z. (2010). A line search algorithm for unconstrained optimization. Journal of Software Engineering and Applications, 3(5), 503-509.

      [30] Andrei, N. (2008). An unconstrained optimization test functions collection. Advanced Modeling and Optimization, 10(1), 147-161.

      [31] Dolan, E. D., & Moré, J. J. (2002). Benchmarking optimization software with performance profiles. Mathematical Programming, 91(2), 201-213.

  • Downloads

  • How to Cite

    Bani Yousef, M., Mamat, M., & Rivaie, M. (2018). A New Hybrid PRP-MMR Conjugate Gradient Methods with Exact Line Search. International Journal of Engineering & Technology, 7(3.28), 232-237. https://doi.org/10.14419/ijet.v7i3.28.23428

    Received date: 2018-12-08

    Accepted date: 2018-12-08