Application of the Naïve Bayes Algorithm for Student Graduation Analysis

  • Authors

    • Erick Akhmad Fahmi Alfa’izy
    • Khairil Anam
    • Naidah Naing
    • Rosanita Tritias Utami
    • Nur Anim Jauhariyah
    • Ahmad Munib Syafa’at
    • Lely Ana Ferawati Ekaningsih
    • Mohammad Roesli
    • Yanna Ika Pratiwi
    • Yeni Ika Pratiwi
    2018-10-07
    https://doi.org/10.14419/ijet.v7i4.15.23596
  • Naïve Bayes algorithm, Application for analysis, algorithm, graduation analysis.
  • Abstract

    Design an analysis system to find out graduation by comparing previous data and existing data to overcome errors in a college system. By taking data records that are already available to be processed using the naïve Bayes algorithm. This research was conducted at Universitas Maarif Hasyim Latif. In this case, the object of research is to analyze the data of students with naïve Bayes algorithms to find out their graduation. For sampling the data taken is the previous Faculty of Law Student data to be used as training data, to retrieve the entire data using data records that are already available in the Directorate of Information Systems. That the naïve Bayes algorithm can be used in the classification of data in the form of a string or textual. This is based on researchers' trials in taking examples of calculations that have been done before. To compare the results of the classification of graduation analysis using the naïve Bayes algorithm testing is done with a sample of data in the form of training data compared to data testing. From the calculations that have been made, the accuracy is 77.78%.

     

  • References

    1. [1] A. Saleh, “Implementasi metode klasifikasi naive bayes dalam memprediksi besarnya penggunaan listrik rumah tangga,†Creat. Inf. Technol. J., vol. 2, no. 3, pp. 207–217, 2015.

      [2] H. Saleh, D. Suryadi, and J. A. Dahlan, “Promoting students’ mathematical problem-solving skills through 7e learning cycle and hypnoteaching model,†in Journal of Physics: Conference Series, 2018, vol. 948, no. 1, p. 12037.

      [3] M. B. N. Wajdi et al., “Advancement of E-Book Through Automation System in Department of Islamic Education (STAI) Miftahul Ula Nganjuk,†Int. J. Eng. Technol., vol. 7, no. 3.6, pp. 438–441, Jul. 2018.

      [4] R. Rahim et al., “Prototype File Transfer Protocol Application for LAN and Wi-Fi Communication,†Int. J. Eng. Technol., vol. 7, no. 2.13, pp. 345–347, 2018.

      [5] M. Ridwan, H. Suyono, and M. Sarosa, “Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier,†J. EECCIS, vol. 7, no. 1, pp. 59–64, 2013.

      [6] Y. S. Nugroho, “Data Mining Menggunakan Algoritma Naive Bayes Untuk Klasifikasi Kelulusan Mahasiswa Universitas Dian Nuswantoro,†Dian Nuswantoro Fak. Ilmu Komput. Skripsi, 2014.

      [7] S. Andini, “Klasifikasi Dokument Teks Menggunakan Algoritma Naive Bayes dengan Bahasa Pemograman Java,†J. Teknol. Inf. Pendidik., vol. 6, no. 2, pp. 140–147, 2013.

      [8] A. Jananto, “Algoritma Naive Bayes untuk Mencari Perkiraan Waktu Studi Mahasiswa,†Din. Teknol. Inf., vol. 18, no. 1, 2013.

      [9] A. Y. Ng and M. I. Jordan, “On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes,†in Advances in neural information processing systems, 2002, pp. 841–848.

      [10] D. D. Lewis, “Naive (Bayes) at forty: The independence assumption in information retrieval,†in European conference on machine learning, 1998, pp. 4–15.

      [11] A. McCallum and K. Nigam, “A comparison of event models for naive bayes text classification,†in AAAI-98 workshop on learning for text categorization, 1998, vol. 752, no. 1, pp. 41–48.

  • Downloads

  • How to Cite

    Akhmad Fahmi Alfa’izy, E., Anam, K., Naing, N., Tritias Utami, R., Anim Jauhariyah, N., Munib Syafa’at, A., Ana Ferawati Ekaningsih, L., Roesli, M., Ika Pratiwi, Y., & Ika Pratiwi, Y. (2018). Application of the Naïve Bayes Algorithm for Student Graduation Analysis. International Journal of Engineering & Technology, 7(4.15), 421-423. https://doi.org/10.14419/ijet.v7i4.15.23596

    Received date: 2018-12-10

    Accepted date: 2018-12-10

    Published date: 2018-10-07