Development and Design Of 8x1 Micro Strip Antenna Array for Military/Satellite Communication

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Antenna design has become as established field of research in recent years. The most important feature of MPA is low cost, low profile and single layer configuration. The frequency band at which the patch antenna operates is 12-1GHz and antenna array are fielded by Microstrip field line incorporated with 50 Ω impedance. In order to achieve enhancement in gain, directivity, bandwidth and return loss Quarter wave transformer and power divider are used. Microstrip patch antenna, employed with highly reflective properties   is presented with the results of modeling, design and simulation. To illustrate this techniques a KU band 2×1, 4×1, 8×1antenna array integrated with series corporate feeding network are designed and simulated. The maximum gain of14.56dB at 10 GHz, the impedance beam width is 86.72% and 99% efficiency is arrived using this technique. Maximum radiation pattern is achieved by using low dielectric substrate of RT-DURROID. The design is verified using HFSS software, used to simulate the antenna array.

     


  • Keywords


    Array antenna, Reflection Co- efficient, gain, impedance bandwidth, VSWR, Beam width

  • References


      [1] K. G. Thomas and M. Sreenivasan, “A simple ultra wideband rectangular printed antenna with band dispensation,” IEEE Trans. Antennas Propag., vol. 58, no. 1, pp. 27–34, Jan. 2010.

      [2] D. Guha, M. Biswas, and J. Y. Siddiqui, “Harrington’s formula extended to determine accurate feed reactance of probe-fed microstrip patches,” IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 33–35,

      [3] C.-K. Lin and S.-J. Chung, “A compact edge-fed filtering microstrip antenna with 0.2 dB equal-ripple response,” In Proc. 39th Eur.Microw. Conf., Rome, Italy, Sep. 29–Oct. 1, 2009, pp. 378–380

      [4] S. Vaccaro, F. Tiezzi, M. F. Rúa, and C. D. G. De Oro, “Ku-band low-profile Rx-only and Tx-Rx antennas for mobile satellite communications,” in Proc. IEEE Int. Symp. on Phased Array Systems and Technology, 2010, pp. 536–542.

      [5] R. Azadegan, “A Ku-band planar antenna array for mobile satellite TV reception with linear polarization,” IEEE Trans. Antennas Propag., vol.58, no. 6, pp. 2097–2101, Jun. 2010.

      [6] T. Li and W. B. Dou, “Millimetre-wave slotted array antenna based on double-layer substrate integrated waveguide,” IET Microw., Antennas Propag., vol. 9, no. 9, pp. 882–888, Jun. 2015.

      [7] F. Bauer and W. Menzel, “A 79 GHz microstrip grid array antenna using a laminated waveguide feed in LTCC,” in Proc. IEEE Int. Symp. Antennas Propag., Spokane, WA, USA, Jul. 2011, pp. 2067–2070.

      [8] G. F. Hamberger, S. Trummer, U. Siart, and T. F. Eibert, “A planar dual polarized microstrip antenna array in

      series-parallel feed configuration,” in Proc. Loughborough Antennas Propag. Conf., Nov. 2015, pp. 1–4.

      [9] C. Chen, J. Shao, S. Meng, G. Fang and H. Yin, “4- element planar array antenna for UWBapplication”, J. of Electronics (China), Vol. 31, pp.175-179, Apr. 2014.

      [10] W. A. Ali, A. I. Zaki and M. Abdou, “Design and fabrication of rectangular ring monopole array with parasitic elements for UWB applications,” Microw. Opt. Technol. Lett., Vol. 58, pp. 2268-2273, Jun.2016.

      [11] Y. Jiang, W. Geyi, L. Yang and H. Sun, “Circularly-Polarized Focused Microstrip Antenna Arrays”, IEEE Antennas and Wireless Propag. Lett., Vol. 15, pp. 52-55, May. 2015.

      [12] Y.-Y. Yang and Q.-X Chu, “Planar 4-element UWB antenna array and time domain characterization”, Microw. Opt. Technol. Lett., Vol. 50, pp. 3118-3123, Sep. 2008.

      [13] C.-X. Zhang, Y.-Q. Zhuang, X.-K. Zhang, and L. Hu, “An UWB microstrip antenna array with novel corporate-fed structure,” Prog. In Electromagn. Res. C, Vol. 52, pp. 7-12, Aug. 2014.

      [14] D. Wang, K. B. Ng, C. H. Chan, and H. Wong, “A novel wideband differentially-fed higher-order mode millimeter-wave patch antenna,” IEEE Trans. Antennas Propag., vol. 63, no. 2, pp. 466–473, Feb. 2015.

      [15] M. H. Awida, S. H. Suleiman, and A. E. Fathy, “Substrate-integrated cavity-backed patch arrays: A low-cost approach for bandwidth enhancement,” IEEE Trans.

      [16] Q. Xue, S. W. Liao, and J. H. Xu, “A differentially-driven dual polarized magneto-electric dipole antenna,” IEEE Trans. Antennas Propag., vol. 61, no. 1, pp. 425–430, Jan. 2013.

      [17] T. Mikulasek, A. Georgiadis, A. Collado, and J. Lacik, “2 × 2 microstrip patch antenna array fed by substrate integrated waveguide for radar applications,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 1287–1290, 2013.

      [18] J. Rossello, F. Mira, A. Collado, and A. Georgiadis, “Substrate integrated waveguide aperture coupled patch antenna array for 24 GHz wireless backhaul and radar applications,” in Proc. IEEE Antenna Meas. Appl. Conf. (CAMA), Nov. 2014, pp. 1–2.

      [19] S. Li, J. Gao, X. Cao, Z. Zhao, and D. Zhang, “Broadband and high isolation dual-polarized microstrip antenna with low radar cross section,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 1413–1416, 2014.

      [20] Y.-J. Chi and F.-C. Chen, “60-GHz polarization-adjustable antenna arrays,” IEEE Trans. Antennas Propag., vol. 63, no. 7, pp. 2887–2894, Jul. 2015.


 

View

Download

Article ID: 23816
 
DOI: 10.14419/ijet.v7i4.36.23816




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.