Study and Analysis of Millimetre Wave Antenna for 5G

  • Authors

    • Nazia Hameed
    • Vipin Gupta
    2018-12-13
    https://doi.org/10.14419/ijet.v7i4.39.23937
  • 6.5 GHz, millimeter wave, 5G, microstrip patch antenna, HFSS
  • Due to the demand of more capacity and users, 5G (next generation) of wireless will be able to handle thousands times more traffic than today it works and it will be 10X faster than today 4G LTE. There has been a great research around the world in advancing future generation 5G wireless networks. Till now 5G standards are not available for us. Some researchers have been started that will provide these standards. The 5G system will require compact but efficient antenna. The main goal of 5G is to obtain better coverage at lower cost. The technology used in 5G to attain this goal will be obtained millimeter waves. Our smart phones and other electronic devices in our homes use specific frequency on radio frequency spectrum typically those under 6 GHz but these frequencies are started to get more crowded. Carriers can only squeeze so many bits of data on same amount of radio frequency spectrum. As more devices come online we are going to see lower service and more dropped connection. The solution is to adapt some new real estate like millimeter waves. In this paper, we present the future antenna for 5G, methodology and variety of simulation results at 6.5 GHz by using HFSS software. A microstrip patch antenna is designed by using FR4-epoxy for advantages of low cost, high flexibility, harmless to human body.

     

     

  • References

    1. [1] Nazia Hameed, DrVipin Gupta, “ Future Antenna for 5G communicationâ€, International Journal of Trend in Scientific Research and Development volume-2, No. 2456-6470, Oct 2018

      [2] BrajlataChauhan, Sandip Vijay, S.C. Gupta, “Millimetre-Wave Mobile Communications Micro strip Antenna for 5G - A Future Antennaâ€, International Journal of Computer Applications Volume 99– No.19, August 2014.

      [3] Theodore S. Rappaport, Shu Sun, RimmaMayzus, Hang Zhao, YanivAzar, “Millimetre Wave Mobile Communications for 5G Cellularâ€, IEEE Access.Vol. 1, 2013.

      [4] T. S. Rappaport, F. Gutierrez, E. Ben-Dor, J. N. Murdock, Y. Qiao, and J. I. Tamir, “Broadband millimetre wave propagation measurements and models using adaptive beam antennas foroutdoor urban cellular communications†,IEEE Trans. Antennas Propag., vol. 61, no. 4, Apr. 2013.

      [5] M. Samimi, K. Wang, Y. Azar, G. N. Wong, R. Mayzus, H. Zhao, J. K. Schulz, S. Sun, F. Gutierrez, and T.S. Rappaport, “28 GHz angle of arrival and angle of departure analysis for outdoor cellular communications using steerable-beam antennas in New York City†, in Proc. IEEE Veh. Technol. Conf., Jun. 2013.

      [6] M. Cudak, A. Ghosh, T. Kovarik, R. Ratasuk, T. Thomas, F. Vook, and P. Moorut, ``Moving towards mmwave-based beyond-4G (B-4G) Technology'', in Proc. IEEE Veh. Technol. Soc. Conf., 2013.

      [7] H. Zhao, R. Mayzus, S. Sun, M. Samimi, J. K. Schulz, Y. Azar, K. Wang, G. N. Wong, F. Gutierrez, Jr., and S. T. Rappaport, ``28 GHz millimetre wave cellular communication measurements for re_ection and penetration loss in and around buildings in New York City'', in Proc. IEEE Int. Conf. Commun., Jun. 2013.

      [8] J. N. Murdock, E. Ben-Dor, Y. Qiao, J. I. Tamir, and T. S. Rappaport „„A 38 GHz cellular outage study for an urban campus environment‟‟, in Proc. IEEE Wireless Commun. Netw. Conf., Apr. 2012.

      [9] S. Rajagopal, S. Abu-Surra, Z. Pi, and F. Khan, ``Antenna array design formulti-Gbpsmmwave mobile broadband communication'', in Proc. IEEE Global Telecommun. Conf., Dec. 2011.

      [10] G. Nair, “Single-feed Dual-frequency Dual-polarizedSlotted Square Microstrip Antennaâ€, Microw. Opt. Technol.Lett., 25, pp. 395-397, June 20, 2000.

      [11] W.F. Richards, Y.T. Lo, and D.D. Harrison, “An ImprovedTheoryFormicrostrip Antennas and Applicationsâ€, IEEETrans. antennas Propagat.29, pp. 38-46, Jan. 1981.

      [12] W.F. William F. Richards, “Microstrip Antennasâ€, inAntennaHandbook,Y.T. Lo and S.W. Lee, Eds. NewYork: Van Nostrand Reinhold, 1993.

      [13] L. Alatan, M.I. Aksun, K. Leblebicioglu, and M.T. Birand,“Useof Computationally Efficient Method of Momentsin the Optimization of Printed Antennasâ€, IEEE Trans.Antennas Propagate., 47, pp. 725-732, Apr. 1999.

      [14] D.H. Shaubert, F.G. Garrar, A. Sindoris, and S.T. Hayes,“Microstripantennas with Frequency Agility andPolarization Diversityâ€, IEEE Trans.Antennas Propagate.,29, pp. 118-123, Jan. 1981.

      [15] W.F. Richards and Y.T. Lo, “Theoretical and ExperimentalInvestigation of a Microstrip Radiator with MultipleLumped Linear Loadsâ€, Electromagn, 3(3-4), pp. 371-385,July-Dec. 1983.

      [16] S.C. Pan and K.L. Wand, “Dual Frequency TriangularMicrostrip Antenna with Shorting Pinâ€, IEEE Trans.Antennas Propagate, 45, pp. 1889-1891, Dec. 1997.

      [17] B.F. Wang and Y.T. Lo, “Microstrip Antennas for DualfrequencyOperationâ€, IEEE Trans. Antennas Propagate.32, pp. 938-943, Sept. 1984, 137-145, Mar. 1979.

      [18] Deal W., N. Kaneda, J. Sor, Y. Qian, and T. Itoh, “A NewQuasiyagi Antenna for Planar Active Antenna Arraysâ€, IEEE.

      [19] Transactions on Microwave Theory and Techniques,48(6), 910-918, Jun. 2000.

      [20] Wang H., D. Fang, L. Wang, and Y. Guo, “AModi¯edtshaped Probe-fed Circularly PolarizedMicrostrip Patch Antennaâ€, Microwave Conference, 2008.Asia-Pacific, 1-4, Dec. 2008.

  • Downloads

  • How to Cite

    Hameed, N., & Gupta, V. (2018). Study and Analysis of Millimetre Wave Antenna for 5G. International Journal of Engineering & Technology, 7(4.39), 227-229. https://doi.org/10.14419/ijet.v7i4.39.23937