Topological Indices of Vitamin D3

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    Graph theory has provided chemists with a variety of useful tools, such as topological indices. A topological index Top(G) of a graph G is a number with the property that for every graph H isomorphic to G, Top(H) = Top(G). In this paper, we compute ABC index, ABC4 index, Randi´c connectivity index, Sum connectivity index, GA index , GA5 index, First Zagreb index, Second Zagreb index, First Multiple Zagreb index, Second Multiple Zagreb index, Augmented Zagreb index, Harmonic index and Hyper Zagreb index, First Zagreb polynomial, Second Zagreb polynomial, Third Zagreb polynomial, Forgotten polynomials, Forgotten topological index and Symmetric division index of vitamin D3.

  • Keywords

    ABC index, ABC4 index, Randi´c connectivity index, Sum connectivity index, GA index , GA5 index, First Zagreb index, Second Zagreb index, First Multiple Zagreb index, Second Multiple Zagreb index, Augmented Zagreb index, Harmonic index, Hyper Zagreb index

  • References

      [1] Ali Astanesh-Asl and G. H Fath-Tabar, Computing the first and third Zagreb polynomials of certained product of graphs, Irsnisn Journal of Marhematical Chemistry. 2-2 (2011), 73 - 78.

      [2] J. Braun, A. Kerber, M. Meringer, C. Rucker, Similarity of molecular descriptors: the equivalence of Zagreb indices and walk counts, MATCH Commun. Math. Comput. Chem. 54 (2005) 163-176.

      [3] S. Chen, W. Liu, the geometric-arithemtic index of nanotubes, J. Comput. Theor. Nanosci. 7 (2010) 1993-1995.

      [4] J. Chen, J. Liu, X. Guo, Some upper bounds for the atom-bond connectivity index of graphs, Appl. Math. Lett. 25 (2012) 1077-1081.

      [5] J. Chen, X. Guo, The atom-bond connectivity index of chemical bicyclic graphs, Appl. Math. j. Chinese Univ. 27 (2012) 243-252.

      [6] K. C. Das, N. Trinajsti´c, Comparision between first geometric-arithmetic index and atom-bond connectivity index, Chem. Phys. Lett. 497 (2010) 149-151.

      [7] Eliasi M, Iranmanesh A, Gutman I. Multiplicative versions of first Zagreb index. MATCH Commun. Math. Comput. Chem. 2012; 68: 217-230.

      [8] E. Estrada, L. Torres, L. Rodriguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J. Chem. 37A (1998), 849-855.

      [9] E. Estrada Atom-bond connectivity and the energetic of branched alkanes, Chem. Phy. Lett. 463 (2008) 422-425.

      [10] M. R. Farahani, Computing fourth atom-bond connectivity index of V-Phenylenic Nanotubes and Nanotori. Acta Chimica Slovenica. 60(2), (2013),429-432.

      [11] M. R. Farahani, On the Fourth atom-bond connectivity index of Armchair Polyhex Nanotube, Proc. Rom. Acad., Series B, 15(1), (2013), 3-6.

      [12] B. Furtula, A. Gravoc, D. Vukiˇcevi´c, Atom-bond connectivity index of trees, Discrete Appl. Math. 157 (2009) 2828-2835.

      [13] B. Furtula, A. Graovac, D. Vukiˇcevi´c, Augmented Zagreb index, J. Math. Chem. 48 (2010) 370 -380 .

      [14] B. Furtula and Gutman .I, A forgotton topological index, J. Math. Chem. 53 (2015) 213 - 220.

      [15] Ghorbani M, Azimi N. Note on multiple Zagreb indices. Iranian Journal of Mathematical Chemistry. 2012; 3(2): 137-143.

      [16] M. Ghorbani, M. A. Hosseinzadeh, Computing ABC4 index of Nanostar dendrimers. Optoelectron. Adv. Mater-Rapid commun. 4(9), (2010), 1419-1422.

      [17] A. Graovac, M. Ghorbani, M. A. Hosseinzadeh, Computing Fifth Geometric-Arithmetic index for nanostar dendrimers, J. Math. Nanosci. , 1, (2011) 33-42 .

      [18] I. Gutman, N. Trinajsti´c, Graph theory and molecular orbitals, Total P electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.

      [19] I. Gutman, K.C. Das, The first Zagreb index 30 years after,MATCH Commun.Math. Comput. Chem. 50 (2004) 83-92.

      [20] I. Gutman: Multiplicative Zagreb indices of trees. Bull. Soc. Math. Banja Luka 18, 17-23 (2011).

      [21] I. Gutman, B. Ruˇsˇci´c and N. Trinajsti´c, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399 - 3405.

      [22] I. Gutman, B. Furtula, M. Ivanovic, Notes on trees with minimal atom-bond connectivity index. MATCH Commun. Math. Comput. Chem. 67, (2012) 467-482.

      [23] Y. Hung, B. Liu and L. Gan, Augumented Zagreb Index of connected graphs MATCH Commun. Math.Comput.Chem. 67 (2012) 483-494.

      [24] M. Randi´c, On Characterization of molecular branching, J. Amer. Chem. Soc., 97, (1975), 6609-6615.

      [25] Shirdel, G.H., RezaPour H., Sayadi. A.M. The Hyper-Zagreb Index of Graph Operations. Iranian Journal of Mathematical Chemistry, 4(2), (2013),213-220.

      [26] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.

      [27] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009, Vols. I and II.

      [28] D. Vukicevic-B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem.,46, (2009) 1369-1376.

      [29] R. Wu, Z. Tang, and H. Deng, A lower bound for the harmonic index of a graph with minimum degree at least two,Filomat 27 (2013) 51-55.

      [30] R. Xing, B. Zhou, Z. Du, Further results on atom-bond connectivity index of trees, Discr. Appl. Math. 157 (2010) 1536-1545.

      [31] R. Xing, B. Zhou, F. Dong, On atom-bond connectivity index of connected graphs, Discr. Appl. Math., in press.

      [32] R. Xing, B. Zhou, Extremal trees with fixed degree sequence for atom-bond connectivity index. Filomat 26, (2012) 683-688.

      [33] L. Xiao, S. Chen, Z. Guo, Q. Chen, The geometric-arithmetic index of benzenoidsystems and phenylenes, Int. J. Contemp. Math. Sci. 5 (2010) 2225-2230.

      [34] B. Zhou, R. Xing, On atom-bond connectivity index, Z. Naturforsch. 66a, (2011), 61-66.

      [35] B. Zhou and N. Trinajsti´c, On a novel connectivity index, J. Math. Chem. 46, (2009), 1252-1270.

      [36] B. Zhou and N. Trinajsti´c, On general sum-connectivity index, J. Math. Chem. 47, (2010), 210-218.

      [37] L. Zhong, The harmonic index on graphs, Appl. Math. Lett. 25 (2012), 561-566.




Article ID: 24064
DOI: 10.14419/ijet.v7i4.24064

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.