Monitoring of Technogenic Destructions of Oil and Gas Facili-ties using 3D Laser Scanning

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    This article discusses application of 3D laser scanning aimed at assessment of consequences of destructions resulted from fires and other technogenic disasters of oil and gas facilities. Deformations of structures and equipment as a consequence of emergencies sometimes cannot be detected visually. It is required to apply modern instrumentation to determine deviations from designed parameters. In addition, after disasters it is required to determine the scope of loss and faults of equipment. Application of 3D laser scanning makes it possible to estimate both availability of buildings and equipment for further operation and the scope of destructions at complex engineering facilities of oil and gas industry. Laser scanning makes it possible to reduce significantly time required for examination and data processing in comparison with other measurement methods.

     

     


     

  • Keywords


    3D laser scanning; Deformation of structures; Hydrocarbon fire; Oil and gas facilities; Technogenic destructions.

  • References


      [1] EN 1363-2:1999 Fire resistance tests - Part 2: Alternative and additional procedures.

      [2] Bol'shakov VD, Levchuk GP, Novak VE, et al. (1980), Spravochnoe rukovodstvo po inzhenerno-geodezicheskim rabotam [Guidebook on engineering and geodesic activities]. Moscow: Nedra.

      [3] Domokeev AG (1989), Stroiteljnye materialy [Construction materials]. Manual for higher schools of civil engineering, 2-nd revised edition. Moscow: Vysshaya shkola.

      [4] Alekseenko NN (2016), Primenenie tehnologii lazernogo skanirovaniya v razlichnyh otraslyakh i na razlichnyh ehtapah zhiznennogo tsikla ob'ektov [Laser scanning in various industries and at various stages of facility operation]. Vestnik MGSU 2, 62-73.

      [5] Seredovich AV (2006), Postroenie tcifrovykh topograficheskikh planov ob'ektov neftedobychi s primeneniem nazemnogo lazernogo skanirovaniya [Plotting digital topographic maps of oil production facilities using terrestrial laser scanning]. Novosibirsk: Proceedings, “Geo-Sibir'-2006”, April 24-28, Vol. 1, Ch. 2, 160-164.

      [6] Voroshilov AP & Karachentsev YuA (2011), S'emka treschin pri nazemnom lazernom skanirovanii zdaniy i sooruzheniy [Crack surveying during terrestrial laser scanning of buildings]. Vestnik YUUrGU, Seriya: stroitel'stvo i arkhitektura 16(233).

      [7] Bernardini F & Holly E (2002), The 3D Model Acquisition Pipeline. Computer Graphics 21(2), 149–172.

      [8] Seredovich VA, Komissarov AV, Komissarov DV & Shirokova TA (2009), Nazemnoe lazernoe skanirovanie [Terrestrial laser scanning]. Novosibirsk: SGGA.

      [9] Mizoguchi T, Koda Y, Iwaki I, Wakabayashi H, Kobayashi Y, Shirai K, Hara Y & Lee H-S (2013), Quantitative scaling evaluation of concrete structures based on terrestrial laser scanning. Automation in Construction 35, 263-274.

      [10] Altyntsev MA & Antsifirov ES (2013), Issledovanie tochnosti uravnivaniya dannyh mobiljnogo lazernogo skanirovaniya [Data equalization accuracy of mobile laser scanning]. Interekspo Geo-Sibir' 3.

      [11] Batischeva OM & Starchevojj IS (2011), Povyshenie kachestva proektirovaniya rekonstrukcii krupnomasshtabnyh i protyazhennyh ob'ektov na osnove metodov trehmernogo modelirovaniya [Quality improvement of retrofitting of large scale and extended facilities using 3D simulation]. Proceedings: Reliability and quality, International symposium, vol. 1, 279-281.

      [12] Seredovich AV, Ivanov AV, Usikov AV, & Miftahudinova OR (2011), Vy`polnenie obmerov stroitel`ny`kh konstruktcii` sredstvami nazemnogo lazernogo skanirovaniia pri obsledovanii zdanii` i sooruzhenii [Measurements of structures by terrestrial laser scanning upon examination of buildings]. Interekspo Geo-Sibir` 2, 225-227.

      [13] Trimble TX5 Laser scanner [Online resource]. Official web site of Trimble. Available online https://www.trimblegnss.ru/trimble-tx5.html

      [14] Kovach NS, Makarov AA, Moshev AA, Khlebutin SB (2015), Metody` lazernogo skanirovaniia: preimushchestva dlia krupny`kh infrastrukturny`kh proektov (na primere rabot po modernizatcii Bai`kalo-Amurskoi` i Transsibirskoi` magistralei`) [Laser scanning: advantages for large scale infrastructural projects (case study of Baikal-Amur and Trans-Siberian Railways)]. Inzhenerny`e izy`skaniia 9, 22-25.

      [15] Berényi A, Lovas T, Barsi Á & Dunai L (2009), Potential of terrestrial laserscanning in load test measurements of bridges. Periodica Polytechnica Civil Engineering 53 (1), 25.

      [16] Ovcharenko AV & Medvedev OA (2015), Metodika operativnogo opredeleniia stepeni deformirovannosti sooruzhenii` na osnove 3d-skanirovaniia [Online determination of deformation rate of structures by 3D scanning]. Tekhnologii grazhdanskoi` bezopasnosti, 12(2(44)), 54-59.

      [17] Russian standard GOST 23501.108-85. CAD systems. Classification and designation.

      [18] Olen`kov VD & Popov DS (2012), Avtomatizatciia diagnostiki tekhnicheskogo sostoianiia zdanii` i sooruzhenii` v protcesse ikh e`kspluatatcii [Automated diagnostics of technical state of buildings during their operation]. Vestneyk Iuzhno-Ural`skogo gosudarstvennogo universiteta. Seriia: Stroitel`stvo i arhitektura, 17(276), 82-85.

      [19] Kawashima K, Kanai S & Date H (2014), As-built modeling of piping system from terrestrial laser-scanned point clouds using normal-based region growing. Journal of Computational Design and Engineering 1(1), 13-26.

      [20] Eyre M, Foster P, Speake G, Coggan J (2017), Integration of Laser Scanning and Three-dimensional Models in the Legal Process Following an Industrial Accident. Safety and Health at Work 8(3), 306-314.


 

View

Download

Article ID: 24444
 
DOI: 10.14419/ijet.v7i4.38.24444




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.