Optimization of Injection Molding Parameters for WC-TaC-6Co

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    The main purpose of this paper is to optimize the injection moulding parameters of WC-Co with TaC as Grain Growth Inhibitor (GGI), through Design of Experiment – Taguchi Method. The selected responses that need to be controlled are shrinkage and warpage. The parameters that were taken into considerations were GGI percentage, injection temperature, injection pressure and injection speed. In this study, L9 (34) orthogonal array from Taguchi Method was chosen as experimental setup and the responses were analyzed using Minitab version 16. Best parameters combinations chosen are, GGI (0.8 wt. % and 1.2 wt. %), injection temperature (145°C), injection pressure (45% and 55%) and injection speed (40%) for minimal shrinkage and warpage. Based on these findings, it is concluded that by controlling the optimum parameter setting, best quality of desired product can be easily achieved and maintained throughout the process.



  • Keywords

    Grain growth inhibitor (GGI); Metal injection molding (MIM); Parameter optimization; Taguchi method

  • References

      [1] M. H. I. Ibrahim, N. Muhammad, A. B. Sulong, K. R. Jamaluin, S. Ahmat, and N. H. M. Nor, “Water Atomised Stainless Steel Powder for Micro Metal Injection Molding : Optimization of Rheological Properties,” J. Mech. Mater. Eng., no. December, pp. 1–8, 2009.

      [2] C. H. Ji, N. H. Loh, K. A. Khor, and S. B. Tor, “Sintering study of 316L stainless steel metal injection molding parts using Taguchi method: final density,” Mater. Sci. Eng. A, vol. 311, no. 1–2, pp. 74–82, 2001.

      [3] K. R. Jamaludin, N. Muhamad, M. N. A. Rahman, and S. Yulis, “Analysis of Variance on the Metal Injection molding parameters using a bimodal particle size distribution feedstock.”

      [4] J. A. Ghani, I. A. Choudhury, and H. H. Hassan, “Application of Taguchi method in the optimization of end milling parameters,” J. Mater. Process. Technol., vol. 145, no. 1, pp. 84–92, 2004.

      [5] S. Ahmad, N. Muhamad, A. Muchtar, J. Sahari, K. R. Jamaludin, M. H. I. Ibrahim, and N. H. M. Nor, “Optimisation of processing parameters of titanium foams using Taguchi method for compressive strength,” in Key Engineering Materials, 2010, vol. 447, pp. 671–675.

      [6] R. S. Chen, H. H. Lee, and C. Y. Yu, “Application of Taguchi’s method on the optimal process design of an injection molded PC/PBT automobile bumper,” Compos. Struct., vol. 39, no. 3–4, pp. 209–214, 1997.

      [7] T. Erzurumlu and B. Ozcelik, “Minimization of warpage and sink index in injection-molded thermoplastic parts using Taguchi optimization method,” Mater. Des., vol. 27, no. 10, pp. 853–861, 2006.

      [8] H. Oktem, T. Erzurumlu, and I. Uzman, “Application of Taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part,” Mater. Des., vol. 28, no. 4, pp. 1271–1278, 2007.

      [9] Y. Li, L. Li, and K. A. Khalil, “Effect of powder loading on metal injection molding stainless steels,” J. Mater. Process. Technol., vol. 183, no. 2–3, pp. 432–439, 2007.

      [10] K. R. Jamaludin, N. Muhamad, M. N. A. Rahman, S. Ahmad, M. H. I. Ibrahim, and N. H. M. Nor, “Optimizing the injection parameter of water atomised SS316L powder with design of experiment method for best sintered density,” Chiang Mai J. Sci, vol. 36, no. 3, pp. 349–358, 2009.

      [11] T. K. Tatt, “Optimization parameters of injection process by using Taghuci method for metal injection molding (MIM) MSc,” Univ. Kebangs. Malaysia, 2009.

      [12] S. Norgren, J. García, A. Blomqvist, and L. Yin, “Trends in the P/M hard metal industry,” Int. J. Refract. Met. Hard Mater., vol. 48, pp. 31–45, 2015.

      [13] R. M. German and A. Bose, “Powder Injection Molding of Metal and Ceramics: Metal Powder Industries Federation,” Princeton, NJ, 1997.

      [14] A. Fayyaz, N. Muhamad, A. B. Sulong, J. Rajabi, and Y. N. Wong, “Fabrication of cemented tungsten carbide components by micro-powder injection moulding,” J. Mater. Process. Technol., vol. 214, no. 7, pp. 1436–1444, 2014.

      [15] S. Y. M. Amin, N. Muhamad, K. R. Jamaludin, A. Fayyaza, and H. S. Yunn, “Ball Milling of WC-Co Powder as Injection Molding Feedstock,” Appl. Mech. Mater., vol. 110–116, pp. 1425–1430, 2011.

      [16] A. Jiang, B. Wen, and Q. Li, “Fabrication of WC-TiC-6 % Co Hard Metals by micro-powder injection moulding,” no. Iwmecs, pp. 543–547, 2015.

      [17] A. Fayyaz, N. Muhamad, A. B. Sulong, H. S. Yunn, S. Y. M. Amin, and J. Rajabi, “Micro-powder injection molding of cemented tungsten carbide: Feedstock preparation and properties,” Ceram. Int., vol. 41, no. 3, pp. 3605–3612, 2015.

      [18] Y. Peng, C. Buchegger, W. Lengauer, Y. Du, and P. Zhou, “Solubilities of grain-growth inhibitors in WC-Co-based cemented carbides: Thermodynamic calculations compared to experimental data,” Int. J. Refract. Met. Hard Mater., vol. 61, pp. 121–127, 2016.

      [19] J. Pötschke, V. Richter, T. Gestrich, T. Säuberlich, and J. A. Meese-Marktscheffel, “Grain growth inhibition in ultrafine hardmetals,” Int. J. Refract. Met. Hard Mater., vol. 66, pp. 95–104, 2017.

      [20] T. Aleksandrov Fabijanić, S. Jakovljević, M. Franz, and I. Jeren, “Influence of Grain Growth Inhibitors and Powder Size on the Properties of Ultrafine and Nanostructured Cemented Carbides Sintered in Hydrogen,” Metals (Basel)., vol. 6, no. 9, p. 198, 2016.

      [21] P. SIWAK and D. GARBIEC, “Microstructure and mechanical properties of WC–Co, WC–Co–Cr3C2and WC–Co–TaC cermets fabricated by spark plasma sintering,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 26, no. 10, pp. 2641–2646, 2016.

      [22] R. Van Der Merwe and N. Sacks, “Effect of TaC and TiC on the friction and dry sliding wear of WC-6 wt.% Co cemented carbides against steel counterfaces,” Int. J. Refract. Met. Hard Mater., vol. 41, pp. 94–102, 2013.




Article ID: 24773
DOI: 10.14419/ijet.v8i1.1.24773

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.