The DTA Curves for Melting of Hypereutectic AlSi Alloy
-
2019-01-24 https://doi.org/10.14419/ijet.v8i1.1.24777 -
Differential Thermal Analysis, Hypereutectic Al-Si Alloy, Melting Temperature and Thermo gravimetric Analysi. -
Abstract
Hypereutectic Al-Si alloy having ˃12 wt% of Si, because of coarse and primary angular Si particles, it is very difficult to improve its mechanical, thermal properties and any phase change. Thermo Mechanical properties and phase change of material is completely depend on melting & solidification of material. Differential thermal analysis is a relatively profound method for studying solidification and melting of alloys. It provides an exact estimation of the characteristic temperature of any phase changes with latent heat release or temperature variation. Such method is used here to a study the melting behavior of the Al-20Si and Al-25Si alloys with respect to temperature variation. Thermo gravimetric Analysis (TGA) resulted, the entire changes in mass of 1.57 mg and 1.43 mg for AlSi20 and AlSi25 alloys respectively. Differential Thermal Analysis (DTA) graph resulted the melting temperature of Al-20Si is 661 0C and for Al-25Si is 680 0C. These values are differing from the value of actual melting temperature of Al-Si alloy. The selection of heating rate is important to achieve better melting behavior results.
Â
 -
References
[1] Lee JA. “Cast aluminum alloy for high temperature applicationsâ€. NASM/Marshall Space Flight Center (MSFC) Materials. Mail Code ED33 Huntsville, AL, 358 12 USA; 2003. pp. 1–8.
[2] Kasprzak, W., J. Sokolowski, H. Yamagata, M. Aniolek, and H. Kurita. “Energy Efficient Heat Treatment for Linerless Hypereutectic Al-Si Engine Blocks Made Using Vacuum HPDC Processâ€. Journal of Materials Engineering and Performance. 2010. p. 1-13.
[3] Paul Marchwica. “Microstructural and Thermal Analysis of AlSi and MgAl Alloys Subjected to High Cooling Ratesâ€. Master of Applied Science Thesis. University of Windsor, Ontario, Canada. 2012.
[4] Hernandez FCR, Sokolowski JH. “Thermal analysis and microscopically characterization of Al–Si hypereutectic alloysâ€. Journal of Alloys and Compounds. 419(1- 2), 2006. pp. 180–190.
[5] Aqeel Ahmed, M. S. Wahab, A. A. Raus, K. Kamarudin, Qadir Bakhsh and Danish Ali. “Mechanical Properties, Material and Design of the Automobile Piston: An Ample Reviewâ€. Indian Journal of Science and Technology, Vol 9(36), 2016. DOI: 10.17485/ijst/2016/v9i36/102155.
[6] Leonhard Heusler and Wolfgang Schneider. “Influence of alloying elements on the thermal analysis results of Al–Si cast alloysâ€. Journal of Light Metals 2, 2002. pp. 17–26.
[7] Ba¨ckerud L, Chai G, Tamminen J. AFS/SKANALUMINIUM 71, 1990. pp. 229.
[8] Samuel FH, Samuel AM, Doty HW. AFS Trans; 104, 1996. pp.893.
[9] E.J. Martı´nez D, M.A. Cisneros G, S. Valtierra, J. Lacaze. “Effect of Strontium and Cooling Rate upon Eutectic Temperatures of A319 Aluminum Alloyâ€. Scripta Materialia 52, 2005. pp. 439–443
[10] Grega KlanÄnik1, Jožef Medved1, Primož Mrvar. “Differential thermal analysis (DTA) and Differential Scanning Calorimetry (DSC) as a Method of material Investigationâ€. RMZ – Materials and Geoenvironment, Vol. 57 (1), 2010. pp. 127–142.
[11] A.M. Baghdasaryan, O.M. Niazyan, H.L. Khachatryan, S.L. Kharatyan. “DTA/TGA study of molybdenum oxide reduction by Mg/Zn & Mg/C combined reducers at non-isothermal conditionsâ€. Int. Journal of Refractory Metals and Hard Materials 51, 2015. pp. 315–323
[12] Jacques Lacaze, Sonja Steinbach, Lorenz Ratke and Alexandre Freulon. “A DTA study of the solidification of Al-Si alloysâ€. Proceedings of the 5th Decennial International Conference on Solidification Processing, Sheffield, July 2007.
[13] W.J. Boettinger, U.R. Kattner, Metall. Mater. Trans. A, 33A, 2002. pp. 1779.
[14] J. Lacaze, S. Ford, C. Wilson, E. Dubu, Scand. J. Metall., 22, 1993. pp. 300.
-
Downloads
-
How to Cite
S. Wahab, M., Ahmed, A., A. Raus, A., Kamarudin, K., & Z. Radzi, E. (2019). The DTA Curves for Melting of Hypereutectic AlSi Alloy. International Journal of Engineering & Technology, 8(1.1), 31-35. https://doi.org/10.14419/ijet.v8i1.1.24777Received date: 2018-12-25
Accepted date: 2018-12-25
Published date: 2019-01-24