Temporal Pattern of Sea Levels in Malaysia

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    Sea level rise would be expected to have several impacts, particularly on Malaysia coastal systems such as changes in sedimentation, erosion, flooding and groundwater inundation, storm surge and waves, and sea water intrusion. The purpose of this study is to analyzes the trend variation of sea level rise (SLR) and modelling the SLR for selected locations in Peninsular Malaysia. To examines the trend of the SLR, the curve estimation method, non – parametric Mann – Kendall test and Theil-Sen Trend Line test were used. Then, SLR is modelled in each tidal station. From the analysis, the results showed that all the selected stations in Peninsular Malaysia; Port Klang for hig h tide – no significant trend and for low tide – downward trend, Bagan Datuk for high tide – upward trend and for low tide – no significant trend and Permatang Sedepa for high tide – upward trend and for low tide – no significant trend. This study is important especially for civil engineers, to provide possible solutions to mitigate or eliminate the effects from sea level fluctuations.




  • Keywords

    curve estimation method; high and low tide; Kruskal-Wallis test; Mann-Kendall test; sea level; Theil-Sen Trend Line test

  • References

      [1] Akerlof KL, Rowan KE, La Porte T, Batten BK, Ernst H & Sklarew DM (2016), Risky business: Engaging the public on sea level rise and inundation. Environmental Science and Policy 66: 314–323. doi:10.1016/j.envsci.2016.07.002

      [2] Church JA & White NJ (2011), Sea-Level Rise from the Late 19th to the Early 21st Century. Surveys in Geophysics 32(4–5): 585–602. doi:10.1007/s10712-011-9119-1

      [3] Nor Aslinda, A. & Mohd Radzi, A. H. 2013. Sea Level Rise in Malaysia. Hydrolink (2): 47–49.

      [4] Madah F, Mayerle R, Bruss G & Bento J (2015), Characteristics of Tides in the Red Sea Region, a Numerical Model Study. Open Journal of Marine Science 5(2): 193–209. doi:10.4236/ojms.2015.52016

      [5] Mao Q, Shi P, Yin K, Gan J & Qi Y (2004), Tides and tidal currents in the Pearl River Estuary. Continental Shelf Research 24(16): 1797–1808. doi:10.1016/j.csr.2004.06.008

      [6] Pugh DT (2001), Gravitational Potential Tidal Patterns. Encyclopedia of Ocean Sciences 32–39.

      [7] Shu JJ (2003), Prediction and Analysis of Tides and Tidal Currents. International Hydrographic Rewiev 4(2): 57–64.

      [8] Hicks SD (2006), Understanding tides. NOAA: Centre of Operational Oceanography 83.

      [9] Nathaniel B (2002), Tides and Tidal Current. The American Practical Navigator 896.

      [10] Conference Handbook. 2017.

      [11] Nicholls RJ (2003), Case study on sea-level rise impacts. Environment 9: 32. Retrieved from http://www.oecd.org/env/cc/2483213.pdf

      [12] Gutierrez BT, Plant NG & Thieler ER (2011), A Bayesian network to predict coastal vulnerability to sea level rise. Journal of Geophysical Research: Earth Surface 116(2): 1–15. doi:10.1029/2010JF001891

      [13] Slangen ABA, Katsman CA, van de Wal RSW, Vermeersen LL A. & Riva REM (2012), Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Climate Dynamics 38(5–6): 1191–1209. doi:10.1007/s00382-011-1057-6

      [14] Fadilah F, Suripin S & Sasongko DP (2014), Menentukan Tipe Pasang Surut dan Muka Air Rencana Perairan Laut Kabupaten Bengkulu Tengah Menggunakan Metode Admiralty. Maspari Journal 6 (1)(1): 1–12.

      [15] Hung TT (2008), Pengaruh Hujan Monsun Ke Atas Ramalan Pasang Surut Di Utara Semenanjung Malaysia (April).

      [16] Andika P & Rozeff PSM (2015), Sistem Monitoring Pengukuran Pasang Surut Air Laut Berbasis SMS Menggunakan Sensor Ultrasonik Dan Komputer Mini.

      [17] Proshutinsky A, Pavlov V & Bourke RH (2001), Sea level rise in the Arctic Ocean. Geophysical Research Letters 28(11): 2237–2240. doi:10.1029/2000GL012760

      [18] Bolin D, Guttorp P, Januzzi A, Jones D, Novak M, Podschwit H, Richardson L, Sarkka A, Sowder C & Zimmerman A (2015), Statistical prediction of global sea level from global temperature. Statistica Sinica 25(1): 351-367. Retrieved from http://www.jstor.org/stable/24311020

      [19] Titus JG, Park RA, Leatherman SP, Weggel JR, Greene MS, Mausel PW, Brown S, Gaunt S, Trehan M & Yohe G (1991), Greenhouse effect and sea level rise: The cost of holding back the sea. Coastal Management 19: 171-204. doi:10.1080/08920759109362138

      [20] Sakawi Z (2017), Local Knowledge of Coastal Community to Sea Level Rise and Climate Change. European Journal of Multidisciplinary Studies 4(2): 128–136.

      [21] Jamaluddin UA, Yaakub J, Suratman S & Pereira JJ (2016), Threats faced by groundwater : A preliminary study in Kuala Selangor. Bulletin of the Geological Society of Malaysia 62(December): 65–72.

      [22] Hay JE, Campbell J, Mclean RF & Nunn P (2003), Climate Variability and Change and Sea-level Rise in the Pacific Islands Region: A Resource Book for Policy and Decision Makers, Educators and other Stakeholders (January): 16.

      [23] Bilskie MV, Hagen SC, Medeiros SC & Passeri DL (2014), Dynamics of sea level rise and coastal flooding on a changing landscape. Geophysical Research Letters 41(3): 927–934. doi:10.1002/2013GL058759

      [24] Hay JE, Mimura N, Campbell J, Fifita S, Koshy K, McLean RF, Nakalevu T, Nunn P & de Wet N (2002), Climate variability and change and sea-level rise in the Pacific lands region: A resource book for policy and decision makers, educators and other stakeholders.

      [25] Bouttes N, Gregory JM & Lowe JA (2013), The reversibility of sea level rise. Journal of Climate 26(8): 2502–2513. doi:10.1175/JCLI-D-12-00285.1

      [26] Bittermann K, Rahmstorf S, Kopp RE & Kemp AC (2017), Global Mean Sea Level Rise in a World Agreed Upon in Paris. Environmental Research Letters 12(12)

      [27] Tangang FT, Juneng L, Salimun E, Sei KM, Le LJ & Halimatun M (2012), Climate Change and variability over malaysia: gaps in science and research information. Sains Malaysiana. 41(11): 1355-1366.

      [28] Mozejko, J. 2012. Detecting and Estimating Trends of Water Quality Parameters. Water Quality Monitoring and Assessment. doi:10.5772/33052

      [29] Meals DWJ, S SA, D. & J.B., H. (2011), Statistical Analysis for Monotonic Trends. TechNotes 6 1–23.

      [30] Demaret L, Dyn N & Iske A (2006) Image compression by linear splines over adaptive triangulations. Signal Processing 86(7): 1604–1616. doi:10.1016/j.sigpro.2005.09.003

      [31] Usepa (2009), Statistical Analysis of Groundwater Data at RCRA Facilities—Unified Guidance. Ground Water Monitoring & Remediation (March): 1–884. doi:10.1111/j.1745-6592.2009.01272.x

      [32] Pohlert T (2016), Non-Parametric trend tests and change-point detection. R package 26. doi:10.13140/RG.2.1.2633.4243

      [33] Abdul Aziz OI & Burn H (2006), Trends and variability in the hydrological regime of the Mackenzie River Basin. Journal of Hydrology 319(1–4): 282–294. doi:10.1016/j.jhydrol.2005.06.039

      [34] Yue S & Wang CY (2004), The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resources Management 18(3): 201–218. doi:10.1023/B:WARM.0000043140.61082.60

      [35] Zarenistanak M, Dhorde AG & Kripalani RH (2014), Trend analysis and change point detection of annual and seasonal precipitation and temperature series over southwest Iran. Journal of Earth System Sciences 123(2): 281–295.

      [36] Jagadeesh P & Agrawal S (2015), Investigation of trends and its magnitude by non-parameteric Mann-Kendall and Sen ’ s slope methods. International Journal of Hydrology Science and Technology 5(1). doi:10.1504/IJHST.2015.069281

      [37] Mapurisa B & Chikodzi D (2014), An Assessment of Trends of Monthly Contributions to Seasonal Rainfall in. American Journal of Climate Change 3(March): 50–59. doi:10.4236/ajcc.2014.31005

      [38] Hirsch RM, Slack JR & Smith RA (1982), Techniques of trend analysis for monthly water-quality data. Water Resources Research 18(1): 107–121. doi:10.1029/WR018i001p00107

      [39] Melik A & Sazu ZRC (2008), Acta geographica Slovenica 1 1: 1–3.

      [40] Toriman MEAM (2015), Trends analysis of groundwater: using non-parametric methods in terengganu malaysia. Journal of Earth Science & Climatic Change 6(1): 1–3. doi:10.4172/2157-7617.1000251

      [41] Demir V & Kisi O (2016), Comparison of Mann-Kendall and innovative trend method (Sen trend) for monthly total precipitation (Middle Black Sea Region , Turkey). 3rd International Balkans Conference on Challenges of Civil Engineering (May): 344–351.

      [42] Okafor G, Jimoh OD & Larbi KI (2017), Detecting changes in hydro-climatic variables during the last four decades (1975-2014) on downstream kaduna river catchment, Nigeria. Atmospheric and Climate Sciences 7(2): 161–175. doi:10.4236/acs.2017.72012

      [43] Onyutha C, Tabari H, Taye MT, Nyandwaro GN & Willems P (2016), Analyses of rainfall trends in the Nile River Basin. Journal of Hydro-Environment Research 13: 36–51. doi:10.1016/j.jher.2015.09.002

      [44] Sulaiman NH, Kamarudin MKA, Mustafa AD, Amran MA, Azaman F, Abidin IZ & Hairoma N (2015), Analisis corak sungai Pahang menggunakan kaedah bukan parametrik: Ujian corak Mann Kendall. Malaysian Journal of Analytical Sciences 19(6): 1327–1334.

      [45] Tabari H, Marofi S, Aeini A, Talaee PH & Mohammadi K (2011), Trend analysis of reference evapotranspiration in the western half of Iran. Agricultural and Forest Meteorology 151(2): 128–136. doi:10.1016/j.agrformet.2010.09.009

      [46] Ahmad I, Tang D, Wang T, Wan M & Wagan B (2015), Precipitation trends over time using Mann-Kendall and spearman’s Rho tests in swat river basin, Pakistan. Advances in Meteorology. doi:10.1155/2015/431860

      [47] Hamed KH (2012), The distribution of Kendall ’ s tau for testing the significance of cross-correlation in persistent data 56(5). doi:10.1080/02626667.2011.586948

      [48] Hennemuth B, Bender S, Bülow K, Dreier N, Keup-Thiel E, Krüger O, Mudersbach C (2013), Statistical methods for the analysis of simulated and observed climate data Applied in projects and institutions dealing with climate change impact and adaptation. CSC Report 13: 135.

      [49] Mcleod AAI (2005), The Kendall Package 1–10.

      [50] Seekel DA (2007), Analysis of a warming trend in water temperature in the hudson river estuary. Institute of Ecosystem Studies 1–17. Retrieved from http://www.caryinstitute.org/sites/default/files/public/reprints/Seekell_2007_REU.pdf

      [51] Karpouzos D, Kavalieratou S & Babajimopoulos C (2010), Trend analysis of precipitation data in Pieria Region (Greece). European Water 30(May): 31–40.

      [52] Mustapha A (2013), Detecting surface water quality trends using mann-kendall tests and sen’s slope estimates. International Journal of Advanced and Innovative Research. ISSN: 2278-7844 108–114.

      [53] Ganguly A, Chaudhuri RR & Sharma P (2015), Analysis of trend of the precipitation data : a case study of kangra district, Himachal Pradesh. International Journal of Research - GRANTHAALAYAH 3(9): 87–95.

      [54] Khattak MS, Babel MS & Sharif M (2011), Hydro-meteorological trends in the upper Indus River basin in Pakistan. Climate Research 46(2): 103–119. doi:10.3354/cr00957

      [55] Paul A, Bhowmik R, Chowdary VM, Dutta D, Sreedhar U & Ravi Sankar H (2017), Trend analysis of time series rainfall data using robust statistics. Journal of Water and Climate Change 8(4): 691–700. doi:10.2166/wcc.2017.141

      [56] Jagadees P. & Anupama C (2014), Statistical and trend analyses of rainfall: A case study of Bharathapuzha river basin, Kerala, India. ISH Journal of Hydraulic Engineering 20(2): 119–132. doi:10.1080/09715010.2013.843280

      [57] Adnan NA (2010), Quantifying the impacts of climate and land use changes on the hydrological response of a monsoonal catchment. University of Southampton, School of Geography, Doctoral Thesis, 272pp. Retrieved from http://eprints.soton.ac.uk/197225/

      [58] Nasher NM & Uddin MN (2013), Maximum and minimum temperature trends variation over Northern and Southern part of Bangladesh. Journal of Environmental Sciences and Natural Resources 6(2): 83–88.

      [59] Partal T & Kahya E (2006), Trend analysis in Turkish precipitation data. Hydrological Processes 20(9): 2011–2026. doi:10.1002/hyp.5993

      [60] Gocic M & Trajkovic S (2013), Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Global and Planetary Change 100: 172–182. doi:10.1016/j.gloplacha.2012.10.014

      [61] Hamzah FM, Saimi FM & Jaafar O (2017), Identifying the monotonic trend in climate change parameter in Kluang and Senai, Johor, Malaysia. Sains Malaysiana 46(10): 1735–1741. doi:10.17576/jsm-2017-4610-09

      [62] Chattopadhyay S & Edwards D (2016), Long-Term Trend Analysis of precipitation and air temperature for Kentucky, United States. Climate 4(1): 10. doi:10.3390/cli4010010

      [63] Jung L, Yi M, Lee, JM, Ahn KH, Won JH, Moon SH & Cho M (2006), Parametric and non-parametric trend analysis of groundwater data obtained from national groundwater monitoring stations 11(2): 56–67.

      [64] Uyanık GK & Güler N (2013), A Study on multiple linear regression analysis. Procedia - Social and Behavioral Sciences 106: 234–240. doi:10.1016/j.sbspro.2013.12.027

      [65] Schneider A, Hommel G & Blettner M (2010), Linear regression analysis: part 14 of a series on evaluation of scientific publications. Deutsches Ärzteblatt international 107(44): 776–82. doi:10.3238/arztebl.2010.0776

      [66] Mahmud MA (2011), Isolated area load forecasting using linear regression analysis: practical approach. Energy and Power Engineering 3(4): 547–550. doi:10.4236/epe.2011.34067

      [67] Lunt M (2015), Introduction to statistical modelling: linear regression: Fig. 1. Rheumatology 54(7): 1137–1140. doi:10.1093/rheumatology/ket146

      [68] Thenmozhi M & Kottiswaran SV (2016), Analysis of Rainfall Trend Using Mann – Kendall Test and the Sen ’ S. International Journal of Agricultural Science and Research 6(2): 131–138.

      [69] Hanna ARG, Rao C & Athanasio T (2010), Graphs in statistical analysis. Key Topics in Surgical Research and Methodology 27(1): 441–475. doi:10.1007/978-3-540-71915-1_35

      [70] Navas RKB, Narayanan KV, Prakash S & Muruganandam A (2016), Analysis of offshore wind energy potential using curve model.

      [71] Karthika SC (2012), Comparative performance of different trend models in relation to crops of Guntur District Acharya N. G. Ranga Agricultural University, Department of Statistics and Mathematics, Master’s thesis. Retrieved from http://krishikosh.egranth.ac.in/bitstream/1/67576/1/D9375.pdf

      [72] Singh M & Supriya K (2017), Growth models and projection of area , production and productivity of wheat in India and Uttar Pradesh, India. International Journal of Current Microbiology and Applied Sciences 6(11): 2587–2595.

      [73] Sawilowsky S & Fahoome G (2014), Kruskal-Wallis Test: basic. In wiley statsref: statistics reference online (eds N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri and j. L. Teugels). Doi: 10.1002/9781118445112.stat06567.

      [74] Cabanes C, Cazenave A & Le Provost C (2001), Sea level rise during past 40 years determined from satellite and in situ observations. Science 294(5543): 840–842. doi:10.1126/science.1063556

      [75] Merrifield MA (2011), A shift in western tropical Pacific sea level trends during the 1990s. Journal of Climate 24(15): 4126–4138. doi:10.1175/2011JCLI3932.1

      [76] Langenberg H, Pfizenmayer A, von Storch H & Suendermann J (1999), Storm related sea level variations along the North Sea coast: natural variability and anthropogenic change. Continental Shelf Research 19: 821–842.

      [77] Rahman HA (2009), Global climate change and its effects on human habitat and environment in Malaysia. Malaysian Journal of Environmental Management 10(2): 17–32.

      [78] Mawdsley RJ, Haigh ID & Wells NC (2015), Global secular changes in different tidal high water , low water and range levels. Earth’s Future 3(2): 1–16. doi:10.1002/2014EF000282.

      [79] Barzani M, Universiti G & Zainal S (2015), The influence of tidal activities on water quality of Paka River Terengganu , Malaysia. Malaysian Journal Of Analytical Sciences 19(5): 979-990.




Article ID: 24882
DOI: 10.14419/ijet.v8i1.2.24882

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.