Enhancement of Biosugar Production Via Enzymatic Yydrolysis of Sodium Hydroxide Pretreated Oil Palm Bagasse: A Statistical Perspective

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Oil palm frond bagasse (OPFB) is the major agriculture waste from the production of palm oil with 0.66g/g of total carbohydrate to serve as potential carbon source for downstream processing in producing succinic acid. This study focused in determining the optimum process variable conditions for the 1% glucan loading for enzymatic hydrolysis process with commercial blending cellulase enzyme mixture of Cellic CTec 2 and hemicellulase enzyme of Cellic HTec 2. Using statistical approach of Response Surface Methodology, three independent process variables; specific enzyme activity (5 - 80 FPU/g glucan), hydrolysis temperature (30 - 70 °C), and agitation speed (100 - 180 rpm) were investigated at five different levels (-α,-1, 0, +1, +α). The regression models indicated that R2 for glucan conversion at 1% GL enzymatic hydrolysis was 97.2% showing the experimental variations were well-defined by the models. For the lack of fit test, the p-values > 0.05 proves that the model was significant to the prediction model. While both specific enzyme activity and hydrolysis temperature were statistically significant, there was no interaction observed between these variables. Although experimental runs reported the maximum glucan conversion of 94% was achieved in the 1% GL hydrolysis with 83.75 FPU/g glucan and 50°C after 96 hours of saccharification process, through validation process, the optimum conditions were determined at 30 FPU/g glucan, 45oC and 100 rpm respectively where these saccharification conditions achieved 90% glucan conversion within 72 hours.

     

     


  • Keywords


    ANOVA; commercial enzyme; glucan conversion; oil palm frond; response surface methodology

  • References


      [1] Zahari, M. A. K. M., M. R. Zakaria, H. Ariffin, M. N. Mokhtar, J. Salihon, Y. Shirai & M. A. Hassan. 2012. Renewable sugars from oil palm frond juice as an alternative novel fermentation feedstock for value-added products. Bioresource Technology 110: 566 - 571.

      [2] Maail, C. M. H. C., H. Ariffin, M. A. Hassan, U. K. M. Shah & Y. Shirai. 2014. Oil Palm Frond Juice as Future Fermentation Substrate: A Feasibility Study. Biomed Research International: 1 - 9.

      [3] Rozario, M. & B. Melssen 2013. National Biomass Strategy 2020: New wealth creation for Malaysia's biomass industry 2: 1 - 35.

      [4] Agbor, V. B., N. Cicek, R. Sparling, A. Berlin & D. B. Levin 2011. Biomass pretreatment: Fundamentals toward application. Biotechnology Advances 29: 675 - 685.

      [5] Balat, M. 2011. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management 52: 858 - 875.

      [6] Harun, S., V. Balan, M. S. Takriff, O. Hassan, J. Jahim & B. E. Dale 2013. Performance of AFEX™ pretreated rice straw as source of fermentable sugars: the influence of particle size. Biotechnology for Biofuels 6(40): 1 - 17.

      [7] Rashid, S. S., M. Z. Alam, M. I. A. Karim & M. H. Salleh 2011. Development of pretreatment of empty fruit bunches for enhanced enzymatic saccharification. African Journal of Biotechnology 10(8): 18728 - 18738.

      [8] Weiss, N., J. Borjesson, L. S. Pedersen & A. S. Meyer 2013. Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling. Biotechnology for Biofuels 65: 1 - 14.

      [9] Carvalho, M. L., R. S. Jr., U. F. Rodriguez-Zuniga, C. A. G. Suarez, D. S. Rodrigues, R. C. Giordano & R. L. C. Giordano 2013. Kinetic Study of the Enzymatic Hydrolysis of Sugarcane Bagasse. Brazilian Journal of Chemical Engineering 30(3): 437 - 447.

      [10] Kristensen, J. B., C. Felby & H. Jorgensen 2009. Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnology for Biofuels 2(11): 1 - 10.

      [11] Qin, W. 2010. High consistency enzymatic hdrolysis of lignocellulose. The University of British Columbia (Vancouver).

      [12] Verardi, A., I. D. Bari, E. Ricca & V. Calabro. 2012. Hydrolysis of Lignocellulosic Biomass: Current Status of Processes and Technologies and Future Perspectives. Dlm. P. M. A. P. Lima (pnyt.). Ed. Bioethanol hlm.: InTech.

      [13] Garlock, R. J., V. Balan & B. E. Dale 2012. Optimization of AFEX™ pretreatment conditions and enzyme mixtures to maximize sugar release from upland and lowland switchgrass. Bioresource Technology 104: 757 - 768.

      [14] Pandiyan, K., R. Tiwari, S. Singh, P. K. S. Nain, S. Rana, A. Arora, S. B. Singh & L. Nain. 2014. Optimization of Enzymatic Saccharification of Alkali Pretreated Parthenium sp. Using Response Surface Methodology. Enzyme Research: 1 - 9.

      [15] Montgomery, D. 2013. Design and Analysis of Experiments by Douglas Montgomery: A Supplement for Using JMP Ed. North Carolina.

      [16] Nurull Muna Daud, Siti Rozaimah Sheikh Abdullah, Hassimi Abu Hasan. 2018. Response surface methodological analysis for the optimization of acid-catalyzed transesterification biodiesel wastewater pre-treatment using coagulation–flocculation process. Process Safety and Environmental Protection 113: 184-192.

      [17] Fauzi, N. A., S. Harun & J. M. Jahim 2016. Physiochemical Changes and Mass Balance of Raw and Alkaline Pretreated Oil Palm Frond: Pressed Versus Non-Pressed Sample. International Journal of Applied Engineering Research 11(19): 9886 - 9893.

      [18] Sukri, S. S. M., R. A. Rahman, R. M. Illias & H. Yaakob 2014. Optimization of Alkaline Pretreatment Conditions of Oil Palm Fronds in Improving the Lignocelluloses Contents for Reducing Sugar Production. Romanian Biotechnological Letters 19: 9006 - 9018.

      [19] Nomanbhay, S. M., R. Hussain & K. Palanisamy 2013. Microwave-Assisted Alkaline Pretreatment and Microwave Assisted Enzymatic Saccharification of Oil Palm Empty Fruit Bunch Fiber for Enhanced Fermentable Sugar Yield. Journal of Sustainable Bioenergy Systems 3: 7 - 17.

      [20] Ghose, T. K. 1987. Measurement of Cellulase Activities. Pure & Appl Chem 59(2): 257 - 268.

      [21] Bailey, M. J., P. Biely & K. Poutanen 1992. Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology 23: 257 - 270.

      [22] Lai, L. W., S. S. M. Yahya, N. M. Nor & M. R. Sulong 2016. Enzymatic Saccharification on ammonia pre-treated oil palm trunk biomass for glucose production: an optimization using response suface methodology. Malaysian Journal of Analytical Science 20(1): 21 - 30.

      [23] Ferreira, S., A. P. Duarte, M. H. L. Riberio, J. A. Queiroz & F. C. Domingues 2009. Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochemical Engineering 45: 192 - 200.

      [24] Abdul, P. M., S. Harun, J. M. Jahim, M. Markom & O. Hasan 2011. Effect of column's temperature and evaluation of RID and ELSD as suitable ion exchange HPLC detection method of simple sugars. Journal of Science and Technology 49(58): 599 -604.

      [25] Tan, J. P., J. M. Jahim, S. Harun, T. Y. Wu & T. Mumtaz 2015. Utilization of oil palm fronds as a sustainable carbon source in biorefineries. International Journal of Hydrogen Energy: 1 - 11.

      [26] MS, S. A., Y. Uemura & S. Yusup 2014. The Effect of Alkaline Addition in Hydrothermal Pretreatment of Empty Fruit Bunches on Enzymatic Hydrolysis Efficiencies.

      [27] Manaf, S. F. A., Luthfi, A. a. I., Jahim, J. M. & Harun, S. 2017. Interaction Effects of Ph and Inhibitors in Oil Palm Frond (Opf) Hemicelullosic Hydrolysate on XylitolProduction: A Statistical Study. Journal of Physical Science 28(1): 241 - 255.

      [28] Hashim, F. S., Yussof, W. M. H. W., Hong, M. K., Roli, N. F. M., Chik, S. M. S. T., Seman, M. N. A. & Mohammad, A. W. 2017. Factors Affecting Enzymatic Hydrolysis from Pretreated Fibre Pressed Oil Palm Frond Using Sacchariseb C6. Journal of Physical Science 28(1): 281 - 295.

      [29] Musatto, S. I., G. Dragone, M. Fernandes, A. M. F. Milagres & I. C. Roberto 2008. The effect of agitation speed, enzyme loading and substrate concentration on enzymatic hydrolysis of cellulose from brewer’s spent grain. Cellulose 15: 711 - 721.

      [30] Viikari, L., M. Alapuranen, T. Puranen, J. Vehmaanpera & M. Siika-aho 2007. Thermostable Enzymes in Lignocellulose Hydrolysis. Adv Biochem Engin/Biotechnol 108: 121 - 145.

      [31] Taherzadah, M. J. & K. Karimi 2007. Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: A review. Bioresources 2(4): 707 - 738.

      [32] Tengborg, C., M. Galbe & G. Zacchi 2001. Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam-pretreated softwood. Biotechnol. Prog 17: 110 - 117.

      [33] Ingesson, H., G. Zacchi, B. Yang, A. R. Esteghlalian & J. N. Saddler 2001. The effect of shaking regime on the rate and extent of enzymatic hydrolysis of cellulose. Journal of Biotechnology 88: 177 - 182.

      [34] Gaikwad, A. & S. Chakraborty 2013. Mixing Effects on the Kinetics of Enzymatic Hydrolysis of Avicel for Batch Production of Cellulosic Ethanol. Industrial & Engineering Chemistry Research 52: 3988 - 3999.


 

View

Download

Article ID: 24908
 
DOI: 10.14419/ijet.v8i1.2.24908




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.