Study on the Effect of Pulsed Current TIG Welding Parameters on Weld Profile of Al-SiC Composite Weldments Using L9 Orthogonal Array’s Experimental Design

  • Authors

    • Sivachidambaram Pichumani
    • Raghuraman Srinivasan
    • Venkatraman Ramamoorthi
    https://doi.org/10.14419/ijet.v7i3.7.25725
  • SiC composite, PCTIG welding, weld profile, regression equation, optimization.
  • Investigation of Al-SiC composite weldment’s, weld profile such as weld depth, weld width and (D/W) ratio, during various conditions of PCTIG welding designed using L9 orthogonal array. The experiment is designed using L9 orthogonal array to reduce the number experiments from 81 to 9 experimental conditions. The parameters considered for PCTIG welding are peak current, base current, pulse frequency and pulse on time. Regression equation, contour plot analysis are developed. This statistical & mathematical analysis are used to find the influence of each pulsed current parameter at each level by pulsed current parameters on weld depth, weld width and (D/W) ratio during PCTIG welding of Al-SiC composite. Optimization of the pulsed current TIG welding parameters is also carried out to and the optimized predicted value is compared with experimental value. PCTIG welding parameters such as peak current of 160A, base current of 60A, pulse on time as 50% and pulse frequencyas 5Hz shows highly desired results such as high weld depth = 2.5mm, minimum weld width = 6.5mm and higher (D/W) ratio = 0.38.

     

  • References

    1. [1] K.M. Shorowordi, T. Laoui, A.S.M.A. Haseeb, J.P. Celis, L. Froyen, Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites-a comparative study, Journal of Materials Processing Technology, 142, 2003, page 738-743. (doi:10.1016/S0924-0136(03)00815-X)

      [2] Ahmed M. El-Sabbagh, Mohamed Soliman, Mohamed A. Taha, Heniz Palkowski, Effect of rolling and heat treatment on tensile behaviour of wrought Al-SiCp Composite prepared by stir-casting, Journal of Materials Processing Technology, 213, 2013, page 1669-1681. (http:/dx.doi.org/10.1016/j.jmatprotec.2013.04.013)

      [3] A. El-Sabbagh, M. Soliman, M. Taha, H. Palkowski, Hot rolling behaviour of stir-cast Al 6061 and Al 6082 alloys-SiC fine particulates reinforced composites, Journal of Materials Processing Technology, 212, 2012, page 497-508. (doi:10.1016/j.jmatprotec.2011.10.16)

      [4] G.G. Sozhamannan, S. Balasivanandha Prabu, V.S.K. Venkatagalapathy, Effect of Processing Parameters on Metal Matrix Composites: Stir Casting Process, Journal of Surface Engineered Materials and Advanced Technology, Volume 2, 2012, page 11-15. (doi:10.4236/jsemat.2012.21002)

      [5] J. Hashim, L. Looney, M.S.J. Hashmi, Metal matrix composites: Production by the stir casting method, Journal of Materials Processing Technology, Volume 92-93, 1999, page 1-7. (PII: S0924-0136(9 9)00118-1)

      [6] Sajjad Amirkhanlou, Roohollah Jamaatri, Behzad Niroumand, Mohammad Reza Toroghinejad, Using ARB process as a solution for dilemma of Si and SiCp distribution in cast Al-Si/SiCp Composites, Journal of Materials Processing Technology, 211, 2011, page 1159-1165. (doi:10.1016/j.jmatprotec.2011.01.019)

      [7] A. Urena, M.D. Escalera, L. Gil, Influence of interface reactions on fracture mechanisms in TIG arc-welded aluminium matrix composites, Composites Science and Technology, 60, 2000, page 613-622. (PII: S0266-3538(99)00168-2)

      [8] LEI Yu-cheng, YUAN Wei-jin, CHEN Xi-zhang, ZHU Fei, CHENG Xiao-nong, In-situ weld-alloying plasma arc welding of SiCp/Al MMC, Transactions of Nonferrous Metals Society of China, 17, 2007, page 313-317.

      [9] Selvi Dev, A. Archibald Stuart, R.C. Ravi Dev Kumaar, B.S. Murty, K. Prasad Rao, Effect of scandium additions on microstructure and mechanical properties of Al-Zn-Mg alloy welds, Materials Science and Engineering A, 467, 2007, page 132-138. (doi:10.1016/j.msea.2007.02.080)

      [10] A. Kumar, P. Shailesh, S. Sundarrajan, Optimization of magnetic arc oscillation process parameters on mechanical properties of AA5456 Aluminum alloy weldments, Materials and Design, 29, 2008, page 1904-1913. (doi:10.1016/j.matdes.2008.04.044)

      [11] S.R. Koteswara Rao, G. Madhusudhana Reddy, M. Kamaraj, K. Prasad Rao, Grain refinement through arc manipulation techniques in Al-Cu alloy GTA welds, Materials Science and Engineering A, 404, 2005, page 227-234. (doi:10.1016/j.msea.2005.05.080)

      [12] K. Karunakaran, V. Balasubramanian, Effect of pulsed current on temperature distribution, weld bead profiles and characteristics of gas tungsten arc welded aluminum alloy joints, Transactions of Nonferrous Metals Society of China, 21, 2011, page 278-286. (doi: 10.1016/S1003-6326(11)60710-3)

      [13] T. Senthil Kumar, V. Balasubramanian, M.Y. Sanavullah, Influences of pulsed current tungsten inert gas welding parameter on the tensile properties of AA6061 aluminium atlloy, Materials and Design, 28, 2007, page 2080-2092. (doi:10.1016/j.matdes.2006.05.027)

      [14] V. Balasubramanian, V. Ravisankar, G. Madhusudhan Reddy, Effect of pulsed current welding on fatigue behaviour of high strength aluminium alloy joints, Materials and Design, 29, 2008, page 492-500. (doi:10.10.1016/j.matdes.2006.12.015)

      [15] Wang Xi-he, Niu Ji-tai, Guan Shao-kang, Wang Le-jun, Cheng Dong-feng, Investigation on TIG welding of SiCp-reinforced aluminum–matrix composite using mixed shielding gas and Al–Si filler, Materials Science and Engineering A, 499, 2009, page 106-110. (doi:10.1016/j.msea.2008.07.037)

      [16] Sivachidambaram Pichumani, Raghuraman Srinivasan, Venkatraman Ramamoorthi. "Mechanical properties, thermal profiles, and microstructural characteristics of Al-8 %SiC composite welded using pulsed current TIG welding", Journal of Mechanical Science and Technology, 32 (4), 2018, 1713-1722.

  • Downloads

  • How to Cite

    Pichumani, S., Srinivasan, R., & Ramamoorthi, V. (2018). Study on the Effect of Pulsed Current TIG Welding Parameters on Weld Profile of Al-SiC Composite Weldments Using L9 Orthogonal Array’s Experimental Design. International Journal of Engineering & Technology, 7(3.7), 626-629. https://doi.org/10.14419/ijet.v7i3.7.25725