Proximate and Mineral Composition of Anabas Testudineus (Climbing Perch) in Peninsular Malaysia

  • Authors

    • Nor Syakirah Hanim Mohd-Khairi
    • Muslimatun Arizal
    • Ha Hou Chew
    • Nguang Siew Ing
    • Poh Seng Chee
    • Mhd Ikhwanuddin
    • Connie Fay Komilus
    2018-12-29
    https://doi.org/10.14419/ijet.v7i4.43.25820
  • Anabas testudineus, Macromineral, Micromineral, Proximate composition.
  • Abstract

    Anabas testudineus (Climbing Perch) is commonly eaten by Malaysians due to its tender flesh and tasty flavor. Usually, it is either freshly cooked or made into various dish including fermented fish called pekasam. This study was done to determine proximate composition, macromineral composition and micromineral composition in climbing perch from 3 states in Peninsular Malaysia. Fish with average body weight 73.18 g and total body length 15.93 m were sampled randomly from fish markets in Terengganu, Selangor and Perak. Proximate composition analysis was carried out using the AOAC method to assess the percentage (%) of protein, fat, moisture and ash. In addition, mineral composition analysis was conducted by using ICP-OES to study the concentration of Ca, P, Mg, Fe, Zn, Mn, Cu, and Cr in mg / kg in fish. Results from the analysis have been compared and analyzed using one-way ANOVA. The study found moisture content was the highest in Selangor (76.56 ± 0.44) % while ash and protein were higher in Perak`s fish (26.98 ± 0.21) % and (43.19 ± 0.81) % respectively. Terengganu`s fish contained the highest fat content at 17.19 ± 1.54 %. Perak`s fish demonstrated the highest macromineral content (Ca, P and Mg) which were 84336.87 ± 1525.41 mg/kg, 46843.90 ± 172.13 mg/kg and 1203.96 ± 10.45 mg/kg respectively. Perak`s fish also showed the highest content of micromineral (Fe and Cu) at (31.31 ± 0.09) mg/kg and (1.52 ± 0.00) mg/kg while Selangor`s fish showed the highest content of Zn and Mn (32.61 ± 0.64) mg/kg and (28.05 ± 0.57) mg/kg. In conclusion, climbing perch caught from Perak and Selangor might be good sources of macromineral and micromineral for human consumption.

     

     

  • References

    1. [1] Sarma, K., Pal, A. K., Ayyappan, S., Das, T., Manush, S. M., Debnath, D. & Baruah, K. (2010) Acclimation of Anabas testudineus (Bloch) to three test temperatures influences thermal tolerance and oxygen consumption. Fish Physiology and Biochemistry 36(1), 85–90.

      [2] Rainboth, W. J. (1996) Fishes of the Cambodian Mekong: FAO Species Identification Field Guide for Fishery Purposes. FAO, Rome.

      [3] Amir Shah Ruddin, M. S. & Ali, A. B. (1998) Fish distribution in the irrigation and drainage canals of the Muda area. p.134-44. In: Rice Ecosystem of the Muda Irrigation Scheme , Malaysia. B. M. Nashriyah, N. K. Ho, B. S. Ismail, A. B. Ali and K. Y. Lum (eds.). MINT-MADA, Malaysia. 256pp.

      [4] MacKay, D. & Miller, A. L. (2003) Nutritional support for wound healing. Alternative Medicine Review 8(4), 359–377.

      [5] Bogard, J. R., Thilsted, S. H., Marks, G. C., Wahab, M. A., Hossain, M. A. R., Jakobsen, J. & Stangoulis, J. (2015) Nutrient composition of important fish species in Bangladesh and potential contribution to recommended nutrient intakes. Journal of Food Composition and Analysis 42, 120–133.

      [6] Deb, A. K. & Emdad Haque, C. (2011) Every mother is a mini doctor: Ethnomedicinal uses of fish, shellfish and some other aquatic animals in Bangladesh. Journal of Ethnopharmacology 134(2), 259–267.

      [7] Mohd Shafri, M. A. & Abdul Manan, M. J. (2012) Therapeutic potential of the haruan (Channa striatus): From food to medicinal uses. Malaysian Journal of Nutrition 18(1), 125–136.

      [8] Fredalina, B. D., Ridzwan, B. H., Abidin, A. A. Z., Kaswandi, M. A., Zaiton, H., Zali, I., Kittakoop, P. & Mat Jais, A. M. (1999) Fatty acid compositions in local sea cucumber, Stichopus chloronotus, for wound healing. General Pharmacology 33, 337–340.

      [9] Zuraini, A., Somchit, M. N., Solihah, M. H., Goh, Y. M., Arifah, A. K., Zakaria, M. S., Somchit, N., Rajion, M.A., Zakaria, Z.A. & Mat Jais, A. M. (2006) Fatty acid and amino acid composition of three local Malaysian Channa spp. fish. Food Chemistry 97(4), 674–678.

      [10] Mustafa, A., Widodo, M. A. & Kristianto, Y. (2012) Albumin and zinc content of snakehead fish (Channa striata) extract and its role in health. International Journal of Science and Technology 1(2), 1–8.

      [11] Komilus, C. F., Koshio, S., Ishikawa, M., Yokoyama, S., Shichi, N., Michael, F. R., Traifalgar, F. R. M., Kyaw, K. & Laining, A. (2008) Comparative studies on physico-chemical properties of the muscle between wild and cultured red sea bream (Pagrus major) obtained in Kagoshima, Southern Japan. Aquaculture Science (Japan) 3(56), 303–315.

      [12] AOAC. (1990) AOAC : Official Methods of Analysis. Journal of Pharmaceutical Sciences, 1,1230.

      [13] Bligh, E. & Dyer, W. (1959) A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37(8), 911–917.

      [14] Uddin, A. H., Khalid, R. S., Alaama, M., Abdualkader, A. M.,Kasmuri, A. & Abbas, S. A. (2016) Comparative study of three digestion methods for elemental analysis in traditional medicine products using atomic absorption spectrometry. Journal of Analytical Science and Technology 7 (6), 1- 7.

      [15] Ang, H. H. & Lee, K. L. (2005) Analysis of mercury in Malaysian herbal preparations. Journal of Medicine and Biomedical Research 4(1), 31-36.

      [16] U.S.EPA. (1996) Method 3050B - Acid digestion of sediments, sludges, and soils. https://doi.org/10.1117/12.528651.

      [17] Shearer, K. D. (1994) Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture 119(1), 63–88.

      [18] Murray, J. & Burt, J. R. The Composition of Fish. Torry Advisory Note No. 38, Ministry of Technology. Torry Research Station, U.K., (2001), 14 pp.

      [19] Monalisa, K., Islam, M. Z., Khan, T. A., Abdullah, A. T. M. & Hoque, M. M. (2013). Comparative study on nutrient contents of native and hybrid Koi (Anabas testudineus ) and Pangas (Pangasius pangasius, Pangasius hypophthalmus) fish. International Food Research Journal 20(2), 791–797.

      [20] Puwastien, P., Judprasong, K., Kettwan, E., Vasanachitt, K., Nakngamanong, Y. & Bhattacharjee, L. (1999) Proximate Composition of Raw and Cooked Thai Freshwater and Marine Fish. Journal of Food Composition and Analysis 12(1), 9–16.

      [21] Paul, B. N., Chanda, S., Bhowmick, S., Sridhar, N., Saha, G. S. & Giri, S. S. (2017) Nutrient Profile Of Indian Climbing Perch , Anabas testudineus. SAARC Journal of Agriculture 15(1), 99–109.

      [22] Mohamed, E. H. A. (2013) Proximate and mineral composition in muscle and head tissue of seven commercial species of the Nile fish from Sudan. Asian Journal of Science and Technology, 4(10), 62–65.

      [23] Swapna, H. C., Amit Kumar Rai, Bhaskar, N. & Sachindra N. M. (2010) Lipid classes and fatty acid profi le of selected Indian fresh water fishes. Journal of Food Science and Technology 47(4): 394–400.

      [24] Mohanty, B. P., Ganguly, S., Mahanty, A., Sankar, T. V., Anandan, R., Chakraborty, K., Paul, B. N., Sarma, D., Syama Dayal, J., Venkateshwarlu, G., Mathew, S., Asha, K. K.,Karunakaran, D., Mitra, T., Chanda, S., Shahi, N. P., Das, P., Akhtar, M.S., Vijayagopal, P. & Sridhar, N. (2016) DHA and EPA content and fatty acid profile of 39 food fishes from India. BioMed Research International, 1–14.

      [25] Martínez-Valverde, I., Jesús Periago, M., Santaella, M. & Ros, G. (2000) The content and nutritional significance of minerals on fish flesh in the presence and absence of bone. Food Chemistry 71(4), 503–509.

      [26] Nurhasan, M., Maehre, H. K., Malde, M. K., Stormo, S. K., Halwart, M., James, D. & Elvevoll, E. O. (2010) Nutritional composition of aquatic species in Laotian rice field ecosystems. Journal of Food Composition and Analysis 23(3), 205–213.

      [27] Masood, Z., Iqbal, F., Haider, M. S. & Mukhtartarar, O. (2015) Evaluation of crude protein and amino acid analysis in the scales of a Rohu species , Labeo rohita collected from Korangi fish harbor, Pakistan. Global Veterinar 15(3), 328–331.

      [28] Marimuthu, K., Thilaga, M., Kathiresan, S., Xavier, R. & Mas, R. H. M. H. (2012) Effect of different cooking methods on proximate and mineral composition of striped snakehead fish (Channa striatus, Bloch). Journal of Food Science and Technology 49(3), 373–377.

      [29] Njinkoue, J. M., Gouado, I., Tchoumbougnang, F., Ngueguim, J. H. Y., Ndinteh, D. T., Fomogne-Fodjo, C. Y. & Schweigert, F. J. (2016) Proximate composition, mineral content and fatty acid profile of two marine fishes from Cameroonian coast: Pseudotolithus typus (Bleeker, 1863) and Pseudotolithus elongatus (Bowdich, 1825). NFS Journal 4, 27–31.

      [30] Ersoy, B. & Özeren, A. (2009) The effect of cooking methods on mineral and vitamin contents of African catfish. Food Chemistry 115(2), 419–422.

      [31] Luo, Z., Li, X., Gong, S., Xi, W. & Li, Y. (2009) Effect of dietary phosphorus on the growth and body components of juvenile Synechogobius hasta. Journal of Ocean Universit of China 8(1), 65–70.

      [32] Gokoglu, N., Yerlikaya, P. & Cengiz, E. (2004) Effects of cooking methods on the proximate composition and mineral contents of rainbow trout (Oncorhynchus mykiss). Food Chemistry 84(1), 19–22.

  • Downloads

  • How to Cite

    Syakirah Hanim Mohd-Khairi, N., Arizal, M., Hou Chew, H., Siew Ing, N., Seng Chee, P., Ikhwanuddin, M., & Fay Komilus, C. (2018). Proximate and Mineral Composition of Anabas Testudineus (Climbing Perch) in Peninsular Malaysia. International Journal of Engineering & Technology, 7(4.43), 59-63. https://doi.org/10.14419/ijet.v7i4.43.25820

    Received date: 2019-01-13

    Accepted date: 2019-01-13

    Published date: 2018-12-29