Proximate and Mineral Compositions of Rice Field Eel Monopterus Albus
-
2018-12-29 https://doi.org/10.14419/ijet.v7i4.43.25822 -
Minerals Composition, Monopterus albus, Proximate Composition, Rice Field Eel -
Abstract
Rice field eel (Monopterus albus) is an air breather freshwater fish that can be found extensively in paddy field area in Malaysia. It has high economic value all over Asia and used as folk remedies for various diseases. Mineral compositions play a vital role in various metabolisms though it's required in a minute amount in the human body. Proximate compositions and selected minerals compositions were determined in Monopterus albus. The study found that Monopterus albus was high in protein content (50.07%-74.31%) and low in lipid (2.26%-2.66%), which suggests this fish species suitable to be consumed by various human conditions. The amplest macroelement was Calcium with a concentration of 29127.00 mg/Kg - 50468.50 mg/Kg, followed by Phosphorus and Magnesium, 21290.00 mg/Kg - 32975.50 mg/Kg and 1264.50 mg/Kg - 1638.50 mg/Kg respectively. Zinc was the dominant microelement found in Monopterus albus with a concentration of 44.17±1.20 mg/Kg followed by Iron, Manganese, Copper, and Chromium with concentration range of 32.60 mg/Kg - 38.6 mg/Kg, 3.40 mg/Kg – 22.65 mg/Kg, 0.97 mg/Kg - 1.07 mg/Kg and 0.59 mg/Kg - 0.78 mg/Kg respectively. The results of this study will be further used to promote fish-based medication and remedies benefit to human.Â
Â
-
References
[1] Mackay, D., & Miller, A. L. Nutritional Support for Wound Healing. Alternative Medicine Review, 8(4), (2003) 359-377.
[2] Jais, A. M. Pharmacognosy and pharmacology of Haruan (Channa striatus), a medicinal fish with wound healing properties. Bol EtinLatinoamericano Caribe Plantas Medicinales Aromaticas, 6(3), (2007) 52–60. https://doi.org/10.3923/ajava.2013.369.375
[3] Abdullah, S., Abdul Mudalip, S. K., Md. Shaarani, S., & Che Pi, N. A. Ultrasonic Extraction of Oil from Monopterus albus: Effects of Different Ultrasonic Power, Solvent Volume and Sonication Time. Journal of Applied Sciences, 10(21), (2010) 2713–2716.
[4] Ma, X., Hu, Y., Wang, X.-Q., Ai, Q.-H., He, Z.-G., Feng, F.-X., & Lu, X.-Y. Effects of practical dietary protein to lipid levels on growth, digestive enzyme activities and body composition of juvenile rice field eel (Monopterus albus). Aquaculture International, 22(2), (2013) 749–760. https://doi.org/10.1007/s10499-013-9703-0
[5] Mardani, M., Asadi-Samani, M., Rezapour, S., & Rezapour, P. Evaluation of bred fish and seawater fish in terms of nutritional value, and heavy metals. Journal of Chemical and Pharmaceutical Sciences, 9(3), (2016) 1277–1283.
[6] Lansdown, A. B., Sampson, B., & Rowe, A. Sequential changes in trace metal, metallothionein and calmodulin concentrations in healing skin wounds. Journal of Anatomy, 195 ( Pt 3) (1999) 375–86. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1468006&tool=pmcentrez&rendertype=abstract
[7] Kulprachakarn, K., Ounjaijean, S., Wungrath, J., Mani, R., & Rerkasem, K. Micronutrients and Natural Compounds Status and Their Effects on Wound Healing in the Diabetic Foot Ulcer. The International Journal of Lower Extremity Wounds, (2017) 1–7. https://doi.org/10.1177/1534734617737659
[8] Demling, R. H. Nutrition, anabolism, and the wound healing process: an overview. Eplasty, 9, (2009) e9. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2642618&tool=pmcentrez&rendertype=abstract
[9] Guo, S., & Dipietro, L. Factors affecting wound healing. Journal of Dental Research, 89(3), (2010) 219–29. https://doi.org/10.1177/0022034509359125
[10] Sazegar, G., Hosseini, S. R. A., & Behravan, E. The effects of supplemental zinc and honey on wound healing in rats. Iranian Journal of Basic Medical Sciences, 14(4), (2011) 391–398.
[11] Kawai, K., Larson, B. J., Ishise, H., Carre, A. L., Nishimoto, S., Longaker, M., & Lorenz, H. P. Calcium-based nanoparticles accelerate skin wound healing. PloS One, 6(11), (2011) e27106. https://doi.org/10.1371/journal.pone.0027106
[12] Rainboth, W., Fishes of the Cambodian Mekong, FAO, Rome, 1996
[13] Bricking, E. M. 2002. Asian Swamp Eel (Monopterus albus). Retrieved from http://www.columbia.edu/itc/cerc/danoff-burg/invasion_bio/inv_spp_summ/Monopterus_albus.html
[14] Sow, A. Y., Ismail, A., & Zulkifli, S. Z. (2013). An assessment of heavy metal bioaccumulation in Asian Swamp Eel, Monopterus albus, during plowing stages of a paddy cycle. Bulletin of Environmental Contamination and Toxicology, 91(1), 6–12. https://doi.org/10.1007/s00128-013-1009-4
[15] Straight, C. A., Reinert, T. R., Freeman, B. J., & Shelton, J. The swamp eel , Monopterus sp . Cf . M . albus, in the chattahoochee river system , Fulton county, Georgia . In Georgia Water Resources Conference (2005).
[16] Jabatan Pertanian Semenanjung Malaysia, Perangkaan Padi Malaysia 2014, Malaysia, 2015
[17] Komilus, C., Koshio, S., Ishikawa, M., et al. Comparative studies on physico-chemical properties of the muscle between wild and cultured red sea bream (Pagrus major) obtained in Kagoshima, Southern Japan. Aquaculture Science (Japan), 3(56), (2008) 303–315. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=JP2008008241
[18] Marimuthu, K., Thilaga, M., Kathiresan, S., Xavier, R., & Mas, R. H. M. H. Effect of different cooking methods on proximate and mineral composition of striped snakehead fish (Channa striatus, Bloch). Journal of Food Science and Technology, 49(3), (2012) 373–7. https://doi.org/10.1007/s13197-011-0418-9
[19] A.O.A.C. (1990) Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed. Association of Official Analytical Chemists, Arlington, VA, USA.
[20] Bligh, E.G. and Dyer, W. J.. A Rapid Method of Total Lipid Extraction and Purification. Canadian Journal of Biochemistry and Physiology, 37(8), (1959) 911-917.
[21] Tuan, L. A., & Williams, K. C. Optimum dietary protein and lipid specifications for juvenile malabar grouper (Epinephelus malabaricus). Aquaculture, 267(1–4), (2007) 129–138. https://doi.org/10.1016/j.aquaculture.2007.03.007
[22] Jabeen, F., & Shakoor, A. Chemical compositions and fatty acid profiles of three freshwater fish species. Food Chemistry, 125(3), (2011) 991–996. https://doi.org/10.1016/j.foodchem.2010.09.103
[23] Li, M., Yu, N., Qin, J. G., Li, E., Du, Z., & Chen, L. Effects of ammonia stress, dietary linseed oil and Edwardsiella ictaluri challenge on juvenile darkbarbel catfish Pelteobagrus vachelli. Fish and Shellfish Immunology, 38(1), (2014) 158–165. https://doi.org/10.1016/j.fsi.2014.03.015
[24] Ang, H., & Lee, K. Analysis of mercury in Malaysian herbal preparations. Journal of Medicine and Biomedical Research, 4(1), (2005) 31–36.
[25] Uddin, A. H., Khalid, R. S., Alaama, M., Abdualkader, A. M., Kasmuri, A., & Abbas, S. A. Comparative study of three digestion methods for elemental analysis in traditional medicine products using atomic absorption spectrometry. Journal of Analytical Science and Technology, 7(1), (2016) 6. https://doi.org/10.1186/s40543-016-0085-6
[26] Babalola, A. F., Adeyemi, R. S., Olusola, A. O., Mutiat, M., Olajuyigbe, O. O., & Akande, G. R.. Proximate and Mineral Composition in the Flesh of Five Commercial Fish Species in Nigeria. Internet Journal of Food Safety, 13, (2011) 208–213
[27] Puwastien, P., Judprasong, K., Kettwan, E., Vasanachitt, K., Nakngamanong, Y., & Bhattacharjee, L. Proximate Composition of Raw and Cooked Thai Freshwater and Marine Fish. Journal of Food Composition and Analysis, 12(1), (1999) 9–16. https://doi.org/10.1006/jfca.1998.0800
[28] Bae, J. H., Yoon, S. H., & Lim, S. Y. Heavy Metal Contents and Chemical Compositions of Atlantic ( Scomber scombrus ) , Blue ( Scomber australasicus ), and Chub ( Scomber japonicus ) Mackerel Muscles. Food Science and Biotechnology, 20(3), (2011) 709–714. https://doi.org/10.1007/s10068-011-0100-z
[29] Grigorakis, K. Compositional and organoleptic quality of farmed and wild gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) and factors affecting it: A review. Aquaculture, 272(1–4)
[30] Chaijan, M., Jongjareonrak, A., Phatcharat, S., Benjakul, S., & Rawdkuen, S. Chemical compositions and characteristics of farm raised giant catfish (Pangasianodon gigas) muscle. LWT - Food Science and Technology, 43(3), (2010) 452–457. https://doi.org/10.1016/j.lwt.2009.09.012
[31] FAO Corporate Document Repository, Measuring Fish Composition. Retrieved from http://www.fao.org/wairdocs/tan/x5957e/x5957e01.htm#Proximate%20composition
[32] Ng, W. K., Lim, P. K., & Boey, P. L. Dietary lipid and palm oil source affects growth, fatty acid composition and muscle α-tocopherol concentration of African catfish, Clarias gariepinus. Aquaculture, 215(1–4), (2003) 229–243. https://doi.org/10.1016/S0044-8486(02)00067-4
[33] Memon, N. N., Talpur, F. N., Bhanger, M. I., & Balouch, A. Changes in fatty acid composition in muscle of three farmed carp fish species (Labeo rohita, Cirrhinus mrigala, Catla catla) raised under the same conditions. Food Chemistry, 126(2), (2011) 405–410. https://doi.org/10.1016/j.foodchem.2010.10.107
[34] Nurhasan, M., Maehre, H. K., Malde, M. K., Stormo, S. K., Halwart, M., James, D., & Elvevoll, E. O. Nutritional composition of aquatic species in Laotian rice field ecosystems. Journal of Food Composition and Analysis, 23(3), (2010) 205–213. https://doi.org/10.1016/j.jfca.2009.12.001
[35] Beamish, F. W. H., Plongsesthee, R., Chanintarapoomi, P., & Nithirojpakdee, P. Total length-weight relationships among Thai freshwater fishes and the influence of capture location and preservation. Journal of Applied Ichthyology, 27(3), (2011) 955–958. https://doi.org/10.1111/j.1439-0426.2010.01620.x
[36] Paul, D. K., Islam, R., & Sattar, M. A. Physico-chemical studies of Lipids and Nutrient contents of Channa striatus and Channa marulius. Turkish Journal of Fisheries and Aquatic Sciences, 13, (2013) 487–493. https://doi.org/10.4194/1303-2712-v13
[37] Yunus, M., & Effendi, M. I. Mineral contents of selected marine fish and shellfish from the west coast of Peninsular Malaysia. International Food Research Journal, 20(1), (2013) 431–437.
[38] MartÃnez-Valverde, I., Periago, M. J., & Ros, G. Nutritional importance of phenolic compounds in the diet. Archivos Latinoamericanos de Nutrición, 50(1), (2000) 5–18. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11048566
[39] Karapanagiotidis, I. T., Yakupitiyage, A., Little, D. C., Bell, M. V., & Mente, E. The nutritional value of lipids in various tropical aquatic animals from rice-fish farming systems in northeast Thailand. Journal of Food Composition and Analysis, 23(1), (2010)1–8. https://doi.org/10.1016/j.jfca.2009.08.001
[40] Bhatia, V., Kulkarni, A., & Nair, V. V. Disorders of Mineral and Bone Metabolism. Practical Pediatric Endocrinology in a Limited Resource Setting. Elsevier. (2013) 159-186 https://doi.org/10.1016/B978-0-12-407822-2.00007-4
[41] Bogard, J. R., Thilsted, S. H., Marks, G. C., Wahab, M. A., Hossain, M. a. R., Jakobsen, J., & Stangoulis, J. Nutrient composition of important fish species in Bangladesh and potential contribution to recommended nutrient intakes. Journal of Food Composition and Analysis, 42, (2015) 120–133. https://doi.org/10.1016/j.jfca.2015.03.002
[42] Hwang, C., Ross, V., & Mahadevan, U. Micronutrient deficiencies in inflammatory bowel disease: from A to zinc. Clinical Review, 18(10), (2012) 1961–1981. https://doi.org/10.1002/ibd.22906
[43] Glasdam, S. M., Glasdam, S., & Peters, G. H.. The Importance of Magnesium in the Human Body: A Systematic Literature Review. Advances in Clinical Chemistry, 73, (2016) 169–193. https://doi.org/10.1016/bs.acc.2015.10.002
[44] Sen, I., Shandil, A., & Shrivastava, V. Study for determination of heavy metals in fish species of the river Yamuna (Delhi) by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Advances in Applied Science Research, 2(2), (2011) 161–166. Retrieved from http://www.pelagiaresearchlibrary.com/advances-in-applied-science/vol2-iss2/AdASR-2011-2-2-161-166.pdf?origin=publication_detail
[45] Gokoglu, N., Yerlikaya, P., & Cengiz, E. Effects of cooking methods on the proximate composition and mineral contents of rainbow trout (Oncorhynchus mykiss). Food Chemistry, 84(1), (2004) 19–22. https://doi.org/10.1016/S0308-8146(03)00161-4
[46] Lall, S. P., & Lewis-McCrea, L. M. Role of nutrients in skeletal metabolism and pathology in fish - An overview. Aquaculture, 267(1–4), (2007) 3–19. https://doi.org/10.1016/j.aquaculture.2007.02.053
[47] Vieira, F. a, Gregório, S. F., Ferraresso, S., et al. Skin healing and scale regeneration in fed and unfed sea bream, Sparus auratus. BMC Genomics, 12(490), (2011) 1–19. https://doi.org/10.1186/1471-2164-12-490
[48] Sow, A. Y., Ismail, A., & Zulikfli, S. Z. Heavy Metals Uptake by Asian Swamp Eel, Monopterus albus from Paddy Fields of Kelantan, Peninsular Malaysia: Preliminary Study. Tropical Life Sciences Research, 23(2), (2012) 27–38.
[49] Ikem, A., Egiebor, N., & Nyavor, K. Trace elements in water, fish and sediment from Tuskegee Lake, Southeastern USA. Water, Air, and Soil Pollution, (2003) 51–75. Retrieved from http://link.springer.com/article/10.1023/A:1025694315763
[50] Plessl, C., Otachi, E. O., Körner, W., Avenant-Oldewage, A., & Jirsa, F. Fish as bioindicators for trace element pollution from two contrasting lakes in the Eastern Rift Valley, Kenya: spatial and temporal aspects. Environmental Science and Pollution Research, 24(24), (2017) 19767–19776. https://doi.org/10.1007/s11356-017-9518-z
[51] Janadeleh, H., & Kameli, M. A. Metals contamination in sediment and their bioaccumulation in plants and three fish species from freshwater ecosystem Metals contamination in sediment and their bioaccumulation in plants and three fish species from freshwater ecosystem. Toxin Reviews, (2017) 1–9. https://doi.org/10.1080/15569543.2017.1309551
[52] Stanek, M., & Stasiak, K. Content of selected elements in the muscle tissue and gills of perch (Perca fluviatilis L.) and water from a Polish lake. Polish Journal of Environmental Studies, 21(4), (2012) 1033–1038. Retrieved from http://www.pjoes.com/pdf/21.4/Pol.J.Environ.Stud.Vol.21.No.4.1033-1038.pdf
[53] González, S., Flick, G. J., O’Keefe, S. F., Duncan, S. E., McLean, E., & Craig, S. R. Composition of farmed and wild yellow perch (Perca flavescens). Journal of Food Composition and Analysis, 19(6–7), (2006) 720–726. https://doi.org/10.1016/j.jfca.2006.01.007
[54] Chaudhry, A. S., & Jabeen, F. Assessing metal, protein, and DNA profiles in Labeo rohita from the Indus River in Mianwali, Pakistan. Environmental Monitoring and Assessment, 174(1–4), (2011) 665–79. https://doi.org/10.1007/s10661-010-1486-4
[55] Sivaperumal, P., Sankar, T. V., & Viswanathan Nair, P. GHeavy metal concentrations in fish, shellfish and fish products from internal markets of India vis-a-vis international standards. Food Chemistry, 102(3), . (2007) 612–620. https://doi.org/10.1016/j.foodchem.2006.05.041
[56] Xu, T., Huang, Y., & Chen, J. Metal distribution in the tissues of two benthic fish from paddy fields in the middle reach of the Yangtze River. Bulletin of Environmental Contamination and Toxicology, 92(4), (2014) 446–50. https://doi.org/10.1007/s00128-014-1211-z
[57] Chow, O., & Barbul, A. Immunonutrition: Role in Wound Healing and Tissue Regeneration. Advances in Wound Care, 3(1), (2014) 46–53. https://doi.org/10.1089/wound.2012.0415
[58] Harris, C. L., & Fraser, C. Malnutrition in The Institutionalized Elderly: The Effects on Wound Healing. OstomyWound Management, 50(10), (2004) 54–63.
-
Downloads
-
How to Cite
Arizal, M., Syakirah Hanim Mohd-Khairi, N., Chew Ha, H., Ing Nguang, S., Ikhwanuddin, M., Chee Poh, S., & Fay Komilus, C. (2018). Proximate and Mineral Compositions of Rice Field Eel Monopterus Albus. International Journal of Engineering & Technology, 7(4.43), 72-77. https://doi.org/10.14419/ijet.v7i4.43.25822Received date: 2019-01-13
Accepted date: 2019-01-13
Published date: 2018-12-29