Tensile Behavior of Alternative Reinforcing Materials as Fiber Reinforced Cementitious Mortar FRCM

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    The adoption of new reinforcing and retrofitting materials provide an alternative and affordable techniques that can be utilized in low-income communities. FRCM is comprised of a broad spectrum family of reinforcing materials such that it allowed utilizing affordable local alternatives such as fishing net FN and welded wire steel mesh WWSM. The composite effectiveness stems from the compatible inorganic matrix properties which have similar properties to the substrate unlike other composites such as FRP. The tensile response of FN and WWSM and their mortar composites has been experimentally studied to characterize their strength, deformation, and the bonding between the reinforcement and the mortar. Experimental investigations on dog-bone composites specimens with their materials samples subjected to uniaxial tensile load were performed. The experimental campaign included testing 12 composite specimens taking into account multiple parameters like material, thread thickness, and the layer effect. The results show comparable strengths and high deformation capacity (12.5 times) of FN to the WWSM. Finally, the SEM imaging shows a well-impregnation between the mortar and the reinforcement of both materials. The tensile response of the composite emphasizes its potential as structural retrofitting and hazard mitigation technique for local builders and house owners in developing countries.

     

     


  • Keywords


    Fishing nets; welded wire steel mesh; mortar; FRCM; SEM

  • References


      [1] A. Badanoiu, J. Holmgren, Cementitious composites reinforced with continuous carbon fibres for strengthening of concrete structures, Cem. Concr Compos. 25 (2003) 387–394.

      [2] H. Kolsch, Carbon Fiber Cement Matrix (CFCM) Overlay System for Masonry Strengthening, J. Compos. Constr. 2 (1998) 105–109. doi:10.1061/(ASCE)1090-0268(1998)2:2(105).

      [3] A. D’Ambrisi, L. Feo, F. Focacci, Experimental and analytical investigation on bond between Carbon-FRCM materials and masonry, Compos. Part B Eng. 46 (2013) 15–20. doi:10.1016/j.compositesb.2012.10.018.

      [4] C. Papanicolaou, T. Triantafillou, M. Lekka, Externally bonded grids as strengthening and seismic retrofitting materials of masonry panels, Constr. Build. Mater. 25 (2011) 504–514. doi:10.1016/j.conbuildmat.2010.07.018.

      [5] E. Bernat-Maso, C. Escrig, C. a. Aranha, L. Gil, Experimental assessment of Textile Reinforced Sprayed Mortar strengthening system for brickwork wallettes, Constr. Build. Mater. 50 (2014) 226–236. doi:10.1016/j.conbuildmat.2013.09.031.

      [6] J. Donnini, V. Corinaldesi, A. Nanni, Mechanical properties of FRCM using carbon fabrics with different coating treatments, Compos. Part B Eng. 88 (2016) 220–228. doi:10.1016/j.compositesb.2015.11.012.

      [7] U. Ebead, K.C. Shrestha, M.S. Afzal, A. El Refai, A. Nanni, Effectiveness of Fabric-Reinforced Cementitious Matrix in Strengthening Reinforced Concrete Beams, J. Compos. Constr. 1 (2015) 1–14. doi:10.1061/(ASCE)CC.1943-5614.0000741.

      [8] S. De Santis, F. Roscini, G. De Felice, Experimental characterization of mortar-based reinforcements with carbon fabrics, in: 2016: pp. 381–386.

      [9] G. de Felice, S. De Santis, L. Garmendia, B. Ghiassi, P. Larrinaga, P.B. Lourenço, D. V. Oliveira, F. Paolacci, C.G. Papanicolaou, Mortar-based systems for externally bonded strengthening of masonry, Mater. Struct. (2014). doi:10.1617/s11527-014-0360-1.

      [10] S.B. Kadam, Y. Singh, B. Li, Strengthening of unreinforced masonry using welded wire mesh and micro-concrete - Behaviour under in-plane action, Constr. Build. Mater. 54 (2014) 247–257. doi:10.1016/j.conbuildmat.2013.12.033.

      [11] S.B. Kadam, Y. Singh, B. Li, Out-of-plane behaviour of unreinforced masonry strengthened using ferrocement overlay, Mater. Struct. 48 (2015) 3187–3203. doi:10.1617/s11527-014-0390-8.

      [12] M.K. El Debs, A.E. Naaman, Bending behavior of mortar reinforced with steel meshes and polymeric fibers, Cem. Concr. Compos. 17 (1995) 327–338. doi:10.1016/0958-9465(95)00031-7.

      [13] W.K.S. Rupika, Out of plane strengthening of unreiforced masonry walls using textile reinforced mortar systems, University of Moratuwa, Sri Lanka, 2010.

      [14] B. Mu, C. Meyer, S. Shimanovich, Improving the interface bond between fiber mesh and cementitious matrix, Cem. Concr. Res. 32 (2002) 783–787. doi:10.1016/S0008-8846(02)00715-9.

      [15] O.S. Marshall, S.C. Sweeney, J.C. Trovillion, Performance Testing of Fiber-Reinforced Polymer Composite Overlays for Seismic Rehabilitation of Unreinforced Masonry, 2000.

      [16] P. Mayorca, K. Meguro, Proposal of an efficient technique for retrofitting unreinforced masonry dwellings, 13th World Conf. Earthq. Eng. Conf. Proceedings, Vancouver, Br. Columbia, Canada, August 1-6, 2004. (2004) Paper 2431. http://www.iitk.ac.in/nicee/wcee/article/13_2431.pdf.

      [17] D. Arboleda, F. Carozzi, A. Nanni, C. Poggi, Testing Procedures for the Uniaxial Tensile Characterization of Fabric-Reinforced Cementitious Matrix Composites, J. Compos. Constr. 20 (2016). doi:10.1061/(ASCE)CC.1943-5614.0000626.

      [18] S. Babaeidarabad, F. De Caso, A. Nanni, Out-of-Plane Behavior of URM Walls Strengthened with Fabric-Reinforced Cementitious Matrix Composite, Asce. 549 (2014) 1–11. doi:10.1061/(ASCE)CC.

      [19] P. Larrinaga, C. Chastre, H.C. Biscaia, J.T. San-José, Experimental and Numerical Modelling of Basalt Textile Reinforced Mortar Behavior Under Uniaxial Tensile Stress, Mater. Des. 55 (2013) 66–74. doi:10.1016/j.matdes.2013.09.050.

      [20] [20] A. Nanni, A New Tool for Concrete and Masonry Repair, Concr. Int. (2012) 43–49.

      [21] C.G. Papanicolaou, T.C. Triantafillou, M. Papathanasiou, K. Karlos, Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls: out-of-plane cyclic loading, Mater. Struct. 41 (2008) 143–157. doi:10.1617/s11527-007-9226-0.

      [22] S. Bisby, L., Stratford, T. ; Joanna Smith, J. and; Halpin, FRP versus Fiber Reinforced Cementitious Mortar Systems at Elevated Temperature, Spec. Publ. 275 (2011) 1–20.

      [23] G. Mesaglio, Tensile behavior of Fabric Reinforced Cementitious Matrix (FRCM) composites, 2014.

      [24] Andrew Smith & Thomas Redman, A critical review of retrofitting methods for unreinforced masonry structures, in: EWB-UK Res. Conf., 2009.

      [25] K. Ramamurthy, E.K. Kunhanandan Nambiar, Accelerated masonry construction review and future prospects, Prog. Struct. Eng. Mater. 6 (2004) 1–9. doi:10.1002/pse.162.

      [26] N. Augenti, A. Nanni, F. Parisi, Construction Failures and Innovative Retrofitting, Buildings. 3 (2013) 100–121. doi:10.3390/buildings3010100.

      [27] ASTM C 270-07, Standard Specification for Mortar for Unit Masonry, Am. Soc. Test. Mater. (2007) 2–13. doi:10.1520/C0270-14A.

      [28] M. Mousa, Low-Cost Fishing Net-Reinforced Cement Matrix Overlay for Substandard Concrete Masonry in Coastal Areas, 2017.

      [29] G. Klust, Netting Materials for Fishing Gear, 1982.

      [30] Shop Blue Hawk Rolled Wire Galvanized Steel Hardware Cloth at Lowes.com, (n.d.). http://www.lowes.com/pd/Blue-Hawk-Rolled-Wire-Galvanized-Steel-Hardware-Cloth-Common-10-ft-x-2-ft-Actual-10-ft-x-2-ft/4780947.

      [31] D. Arboleda, Fabric Reinforced Cementitious Matrix (FRCM ) Composites for Infrastructure Strengthening and Rehabilitation : Characterization Methods, 2014.


 

View

Download

Article ID: 25933
 
DOI: 10.14419/ijet.v7i4.20.25933




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.