Photocatalyst Nanostructured Tioâ‚‚ Powder by Using Hydrothermal Method: a Review
-
2019-01-18 https://doi.org/10.14419/ijet.v8i1.7.25977 -
Factor, hydrothermal method, nanostructure TiOâ‚‚, photocatalytic application, rutile -
Abstract
Over the past decades, Titanium dioxide (TiOâ‚‚) have been studied extensively that give positive impact to its synthesis and fabrication method that resulting discovery of a simple low-temperature hydrothermal method that makes the nanostructure of TiOâ‚‚ easily modified according to the desired application. This paper presents a review of photocatalyst nanostructured TiOâ‚‚ by using hydrothermal method as its fabrication method. The TiOâ‚‚ powder widely used as a photocatalytic application that mainly for self-cleaning and wastewater treatment. Â Rutile phase is stable in the high-temperature region compared to anatase and brookite that metastable in high temperature and photo-catalytic activity, PCA could be enhanced by increasing the number of oxygen. By manipulating the preparation method and thermal treatment, a superior photocatalyst with high surface area and crystallinity which correlated to photocatalytic performance was able to produce. In addition to this, photocatalytic activity of TiOâ‚‚ is substantially dependent on the crystal size, specific surface area, crystal defects, charge separation capacity and the interface between the photocatalyst and the molecules.
Â
-
References
[1] K. Suriye, P. Praserthdam, B. Jongsomjit, “Control Of Ti3+ Surface Defect On Tio2 Nanocrystal Using Various Calcination Atmospheres As The First Step For Surface Defect Creation And Its Application In Photocatalysisâ€, Applied Surface Science Vol. 253 (2007), pp 3849-3855.
[2] A. Fujishima, X. Zhang, D.A. Tryk, “TiOâ‚‚ photocatalysis and related surface phenomenaâ€, Surface Science Reports Vol. 63 (2008), pp 515-582.
[3] Z. He, Q. Cai, H. Fang, G. Situ, J. Qiu, S. Song, J. Chen, “Photocatalytic activity of TiOâ‚‚ containing anatase nanoparticles and rutile nanoflower structure consisting of nanorodsâ€, Journal of Environment Science Vol. 25 (12), (2013), pp 2460-2468.
[4] X. Shang, B. Li, T. Zhang, C. Li, X. Wang, “Photocatalytic degradation of methyl orange with commercial organic pigment sensitized TiOâ‚‚â€, Procedia Environmental Sciences, Vol. 18, (2013), pp 478-485.
[5] G. Yudoyono, N. Ichzan, V. Zharvan, R. Daniyati, H. Santoso, B. Indarto, Y.H. Pramono, M. Zainuri, Darminto, “Effect of calcination temperature on the photocatalytic activity of TiOâ‚‚ powders prepared by co-precipitation of TiCl₃â€, The international Conference on Advanced Materials Science and Technology, 1725, 020099 (2016); doi: 10.1063/1.4945553.
[6] X. Zhao, M. Liu, Y. Zhu, “Fabrication of porous TiOâ‚‚ film via hydrothermal method and its photocatalytic performancesâ€, Thin Solid Films, 515, (2007), pp 7127-7134.
[7] L. Min, L. Wei-ming, Z. Lei, Z. Chun-lan, L. Hai-ling, W. Wen-jing, “ Fabrication and photocatalytic properties of flower-like TiOâ‚‚ nanostructuresâ€, Trans. Nonferrous Met. Soc. China Vol. 20, (2010), pp 2299-2302.
[8] Z. Liu, D.D. Sun, P. Guo and J.O. Leckie, “One-step fabrication and high photocatalytic activity of porous TiOâ‚‚ hollow aggregates by using a low-temperature hydrothermal method without templatesâ€, Chemistry Europe Journal, Vol 13, (2007), pp 1851-1855.
[9] X. Haifeng, L. Guang, Z. Guang, Z. Kerong, J. Shaowei, “ Enhanced photocatalytic degradation of rutile/anatase TiOâ‚‚ heterojunction nanoflowersâ€, Catalysis Communications, Vol 62, (2015), pp 52-56.
[10] L. Meicheng, J. Yongjian, D. Ruiqing, S. Dandan, Y. Hang, C. Zhao, “Hydrothermal synthesis of anatase TiOâ‚‚ nanoflowers on a nanobelt framework for photocatalytic applicationsâ€, Journal of electronic materials, Vol. 42, (2013), pp 1290-1296.
[11] S. Funda, A. Meltem, S. Sadiye, E. Sema, E. Murat and S. Hikmet, “Hydrothermal synthesis, characterization and photocatalytic activity of nanosized TiOâ‚‚ based catalyst for rhodamine B degradationâ€, Turkey Journal Chemistry, Vol. 31, (2007), pp 211-221.
[12] G. Qiang, W. Xiaomei, F. Yueming, Z. Xiya, “Low temperature fabrication nanoflower arrays of rutile TiOâ‚‚ on mica particles with enhanced photocatalytic activityâ€, Journal of alloys and compounds, Vol. 579, (2013), pp 322-329.
[13] M.K. Ahmad and K. Murakami, “low temperature and normal pressure growth of rutile-phased TiOâ‚‚ nanorods/nanoflowers for DSC application prepared by hydrothermal methodâ€, Journal of advanced research in physics, Vol. 3, (2012), pp 1-3.
[14] H.S. Chen, C.C. Su, J.L. Chen, T.Y. Yang, N.M. Hsu, and W.R. Li, “Preparation and Characterization of Pure Rutile TiO2 Nanoparticles for Photocatalytic Study and Thin Films for Dye-Sensitized Solar Cellsâ€, Journal of Nanomaterials, Vol. 2011, Article ID 869618, 8 pages, doi:10.1155/2011/869618
[15] N.S. Khalid, W.S. WanZaki, and M.K. Ahmad, “Growth of rutile phased titanium dioxide (TiOâ‚‚) nanoflowers for Hela cells treatmentâ€, 5th International Conference on Biomedical Engineering in Vietnam, Vol.46, (2015), pp 243-246, DOI: 10.1007/978-3-319-11776-8_59
[16] P. Hoyer, Formation of titanium dioxide nanotube array, Langmuir, Vol. 12 (1996) 1411–1413.
[17] J.H. Jung, H. Kobayashi, K.J.C. van Bommel, S. Shinkai, T. Shimizu, Chem. Mater, Vol. 14 (2002) 1445–1447.
[18] J.H. Lee, I.C. Leu, M.C. Hsu, Y.W. Chung, M.H. Hon, “Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating solution approachâ€, J. Phys. Chem. B 109 (2005) 13056–13059.
[19] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of titanium oxide nanotubeâ€, Langmuir, Vol. 14 (1998) 3160–3163.
[20] V. Zwilling, M. Aucouturier, E. Darque-Ceretti, “Structure and physicochemistry of anodic oxide films on titanium and TA6V alloyâ€, Surf. Interface Anal. , Vol. 27, (1999), pp 629–637.
[21] D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, “Titanium oxide nanotube arrays prepared by anodic oxidationâ€, J. Mater. Res., Vol. 16, (2001), pp 3331–3334.
[22] O.K. Varghese, D. Gong, M. Paulose, C.A. Grimes, E.C. Dickey, “Crystallization and high-temperature structural stability of titanium oxide nanotube arraysâ€, J. Mater. Res., Vol. 18 (2003), pp 156–165.
[23] O.K. Varghese, M. Paulose, K. Shankar, G.K. Mor, C.A. Gong, Grimes, “Water-photolysis properties of micro-length highly-ordered titanate nanotubes-arraysâ€, J. Nanosci. Nanotechnol., Vol. 5, (2005) , pp 1158–1165.
[24] A. Ghicov, H. Tsuchiya, J.M. Macak, P. Schmuki, “Titanium oxide nanotubes prepared in phosphate electrolytesâ€, Electrochem. Commun., Vol. 7, (2005), pp 505–509.
[25] H. Tsuchiya, J.M. Macak, L. Taveira, E. Balaur, A. Ghicov, K. Sirotna, P. Schmuki, “Self-organized TiO2 nanotubes prepared in ammonim fluoride containing acetic acid electrolytesâ€, Electrochem. Commun., Vol. 7, (2005), pp576–580.
[26] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Titania nanotubes prepared by chemical processingâ€, Adv. Mater. Vol. 11, (1999), pp 1307–1311.
[27] G.H. Du, Q. Chen, R.C. Che, Z.Y. Yuan, L.M. Peng, “Preparation and structure analysis of titanium oxide nanotubesâ€, Appl. Phys. Lett., Vol. 79, (2001), pp 3702–3704.
[28] Q. Chen,W.Z. Zhou, G.H. Du, L.M. Peng, “Tritanate nanotubes made via a single alkali treatmentâ€, Adv. Mater., Vol. 14, (2002), pp 1208–1211.
[29] Q. Chen, G.H. Du, S. Zhang, L.M. Peng, “The structure of tritinate nanotubesâ€, Acta Cryst. B, Vol. 58, (2002), pp587–593.
[30] S. Zhang, L.M. Peng, Q. Chen, G.H. Du, G. Dawson,W.Z. Zhou, “Formation mechanism of H2Ti3O7 nanotubesâ€, Phys. Rev. Lett. Vol. 91, (2003),256103-1:4.
[31] J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo, Z. Zhang, “Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2,†Dalton Trans., (2003), pp 3898–3901.
[32] M. Zhang, Z. Jin, J. Zhang, X. Guo, J. Yang, W. Li, X. Wang, Z. Zhang, “Effect of annealing temperature on morphology, structure, and photocatalytic behavior of nanotubed H2Ti2O4(OH)2â€, J. Mol. Catal. A., Vol. 217, (2004), pp 203–210.
[33] S. Zhang, W. Li, Z. Jin, J. Yang, J. Zhang, Z. Du, Z. Zhang, “Study on ESR and inter-related properties of vacumm-dehydrated nanotube titanic acidâ€, J. Solid State Chem., Vol. 11, (2004), pp 1365–1371.
[34] A. Thorne, A. Kruth, D. Tunstall, J.T.S. Irvine,W. Zhou, “Formation, structure, and stability of titanate nanotubes and their proton conductivityâ€, J. Phys. Chem. B., Vol. 109, (2005), pp 5439–5444.
[35] C.C. Tsai, H. Teng, “Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatmentâ€, Chem. Mater., (2004), pp 4352–4358.
[36] C.C. Tsai, H. Teng, “Structure features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatmentâ€, Chem. Mater. Vol. 18, (2006), pp 367–373.
[37] J.N. Nian, H. Teng, “Hydrothermal synthesis of single-crystalline anatase. TiO2 nanorods with nanotubes as the precursorâ€, J. Phys. Chem. B, Vol. 110, (2006), pp 4193–4198.
[38] C.C. Tsai, J.N. Nian, H. Teng, “Mesoporous nanotube aggregates obtained from hydrothermally treating TiO2 with NaOHâ€, Appl. Surf. Sci. 253, (2006), pp 1898–1902.
[39] LINSEBIGLER A L, LU Gap-qing, YATES J T. “Photocatalysis on TiO2 surface: Principles, mechanisms and selected resultsâ€, [J].Chem Rev., 95(3), (1995), pp 735−758.
[40] KUCHIBHATLA S V N T, KARAKOTI A S, BERA D, SEAL C. “One dimensional nanostructured materials†[J]. Prog Mater Sci, Vol. 52, (2007), pp 699−913.
[41] HUANG Ji-quan, HUANG Zhi, GUO Wang, WANG Mei-li, CAO Yong-ge, HONG Mao-chun. “Facile synthesis of titanate nanoflowers by a hydrothermal route†[J]. Crystal Growth & Design, Vol. 8(7), (2008), pp 2444−2446.
[42] TOKUDOME H, MIYAUCHI M. “ Electrochromism of titanate-based nanotubes†[J]. Angew Chem Int Ed, Vol. 44(13), (2005), pp 1974−1977.
[43] WANG Bao-xiang, SHI Yong, XUE Dong-feng. “Large aspect ratio titanate nanowire prepared by monodispersed titania submicron sphere via simple wet-chemical reactionsâ€, J. Solid State Chem. (2007), 180: pp 1028−1037.
[44] LUO Yong-song, LI Su-qin, REN Qin-feng, LIU Jin-ping, XING Lan-lan, WANG Yan, YU Ying, JIA Zhi-jie, LI Jia-lin. “Facile synthesis of flowerlike Cu2O nanoarchitectures by a solution phase routeâ€, Cryst Growth Des, Vol. 7(1), (2007), pp 87−92.
[45] FANG Xiao-sheng, YE Chang-Hui, ZHANG Li-de, ZHANG Jun-xi, ZHAO Jian-wei, YAN Peng., “ Direct observation of the growth process of MgO nanoflowers by a simple chemical routeâ€, Small, Vol. 1(4), (2005), pp 422−428.
[46] ZHU Jian, WANG Shao-hua, BIAN Zhen-feng, CAI Chen-ling, LI He-xing., “A facile synthesis of hierarchical flower-like TiO2 with enhanced photocatalytic activityâ€, Res Chem Intermed, Vol. 35, (2009), pp 769−777.
[47] HU Wan-biao, LI Li-ping, LI Guang-she, TANG Chang-lin, SUN Lang., “High-quality brookite TiO2 flowers: Synthesis, characterization, and dielectric performanceâ€, Cryst Growth Des, Vol. 9(8), (2009), pp 3676−3682.
[48] D. Gopi, J., Indira, L., Kavitha, M., Sikar, & U.K Modali, “Synthesis of hydroxyapatite nanoparticles by a ultrasonic assisted with mixed hollow sphere template methodâ€, Spectrochemica Acta Part A, 131, (2012).
[49] Noor Aman & Trilochan Mishra, “Photocatalytic materials and surfaces for environmental cleanup-II Journal of Recent development on titania based mixed oxide photocatalysts for environmental application under visible lightâ€, 196, (2013).
[50] Funda Sayilkan, Meltem Asilturk, Sadiye Sener, Sema Erdemoglu, Murat Erdemoglu, Hikmet Sayilkan, “Hydrothermal Synthesis, Characterization and Photocatalytic Activity of Nanosized TiO2 Based Catalysts for Rhodamine B Degradationâ€, pp 211-221.
[51] P. Calza, C.Minero, E. Pelizzetti, “Photo-catalytic assisted hydrolysis of chlorinated methane in the presence of electron and hole scavangers, Environ. Sci. Technol, (1997).
[52] Linsebigler, A. L , Lu, G. & Yates, J.T., “Photocatalysis in TiO₂ surfaces: principles, mechanisms & selected results. Chemical reviews, Vol. 95, (1995), pp 735-758.
[53] Fujishima, A, Rao, T. N & TRYK, D. A., “Titanium dioxide photocatalysis. Journal of photochemistry & photobiology†photochemistry reviews, (2000), pp 1-21.
[54] Fujishima, A, Zhang, X & TRYK , D.A, “TiOâ‚‚ photocatalysis and related surface phenomenaâ€, Surface Science Reports, (2008), pp 515-582.
[55] C.F. Goodeve and J.A Kitchener., “The mechanism of photosensitisation by solidsâ€, Trans. Faraday Soc., Vol. 34, (1983), pp. 902-908.
[56] F. Kato and S. Mashio, “Autooxidation by TiOâ‚‚ as a photocatalystâ€, Abtr. B. Annu. Meet Chem. Soc. Japan., (1956). pp. 223.
[57] A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrodeâ€. Nature, Vol. 238, no. 5358, (1956), pp. 37-38.
[58] S. N. Frank and A. J. Bard, “Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powderâ€, J. Am. Chem. Soc., Vol. 99, no. 1, (1977), pp. 303-304.
[59] Amy. L., Linsebigler Lu, John. T. Yates. J. “ Photocatalysis on TiOâ‚‚ surfaces : principle, mechanisms and selected resultsâ€. Chem. Rev 735 – 758.
[60] Hashimoto, K, Irie, H & Fujishima, A. “TiOâ‚‚ Photocatalysis: a historical overview & future prospectsâ€, Japanese Journal Of Applied Physics, (2005), pp 269.
[61] Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E. & Batzill, M., “Why is anatase a better photocatalyst than rutile? – model studies, on epitaxial TiOâ‚‚ filmsâ€, Scientific Reports, 4, (2004).
[62] DI Paola, A. Bellardita, M & Palmisano, L., “Brookite, the least known TiOâ‚‚ photocatalystâ€, Catalyst, (2013), pp 36-73.
[63] Zhang, Q., Gao, L & Guo, J. “Effect of calcination on the photocatalytic properties of nanosized TiOâ‚‚ powder prepared by TiClâ‚„ hydrolysisâ€, Applied catalysis B: environmental, (2000), pp 207-215.
[64] Kominami, H., Kato, J-I, Murakami, S. Y., Ishii. Y, Kohno, M, Yabutani, K-I, Yamamoto, T., Kera, Y., Inoue, M., Inui T. & Ohtani B., “Solvothermal syntheses of semiconductor photocatalysts of ultrahigh activitiesâ€, Catalysis Today, (2003), pp 181-189.
[65] Maeda, M. & Watanabe, T. “Effect of crystallinity and grain size on photocatalytic activity of titania filmsâ€, Surface & Coatings Technology, (2007), pp 9309-9312.
[66] Lakshmi, S., Renganathan, R & Fujita, S., “Study on TiOâ‚‚ - mediated photocatalytic degradation of methylene blueâ€, Journal of photochemistry & photobiology A: Chemistry, (1995), pp 163-167.
[67] Burda, C., Lou, Y., Chen, X., Samia, A. C, Stout , J. & Gole, J. L., “Enhanced nitrogen doping in TiOâ‚‚ nanoparticlesâ€, Nano letters, (2003), pp1049-1051.
[68] Fujihira, M., Satoh,Y. & Osa, T., “Heterogeneous photocatalytic oxidation of aromatic compounds on TiO₂, (1981).
[69] Ashkarran, A. A., Aghigh, S. M.& Farahani, N, J., “Visible light photo-and bioactivity of Ag/ TiOâ‚‚ nanocomposite with various silver contentsâ€. Current Applied Physics, (2011), pp1048-1055.
[70] Jiao, Y., Chew, F., Zhao, B., Yang, H. & Zhang, J., “Anatase grain loaded brookite nanoflower hybrid with superior photocatalytic activity for organic degradationâ€, Colloids & surfaces A: Physiochemical and Engineering Aspects, (2012), pp 66-71.
[71] Sreethawong, T., Ngamsinlapasathian, S. & Yoshikawa, S., “Surfactant-aided-sol-gel synthesis of mesoporous- assembled TiOâ‚‚-NiO mixed oxide nanocrystals and their photocatalytic azo dye degradation activityâ€. Chemical Engineering Journal, (2012), pp 292-300.
[72] Gharagozlou, M. & Bayati, R., “Photocatalytic activity 7 formation of oxygen vacancies in cation doped anatase TiO₂ nanoparticles†Ceramics International, (2014), pp 10247-10253.
[73] M. H. Samat, A. M. M. Ali, M. F. M. Taib, O. H. Hassan, M. Z. A. Yahya. (2016). Hubbard U calculations on optical properties of 3d transition metal oxide TiOâ‚‚. Journal of physics, 891-896.
[74] Amy. L., Linsebigler Lu, John. T. Yates. J., “Photocatalysis on TiOâ‚‚ surfaces : principle, mechanisms and selected resultsâ€, Chem. Rev, (1994), pp 735 – 758.
[75] Serpone. N., Pelizzetti. E., Eds., “Photo-induced electron transfer, Part A : Conceptual basisâ€. Elsevier ,(1998).
[76] Gratzel. M., “Heterogeneous photochemical electron transferâ€, Conference Press Boca Raton, (1989).
[77] Rosenwaks. Y., Thackers. B. R., Nozik. A. J., Ellingson. R. J., Burr. K. C., Tang. C. L. J Physics Chemistry. (1994).
[78] W. Baran, A. Makowski, W. Wardas, “The effect of UV radiation absorption of cationic and anionic dye solutions on their photocatalytic degradation in the presence of TiOâ‚‚, Dyesâ€, Pigm. Vol. 76, (2008), pp 226–230.
[79] Nakata, K & Fujishima, A., “TiOâ‚‚ photocatalysis : Design and applications. Journal of photochemistry and photobiology C: Photochemistry Reviewsâ€, (2012), pp 169-189.
[80] W. Baran, A. Makowski, W. Wardas, “The influence of FeCl3 on the photocatalytic degradation of dissolved azo dyes in aqueous TiOâ‚‚ suspensionsâ€, Chemosphere, Vol. 53, (2003), pp87–95.
[81] W.Z. Tang, H. An, “UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutionsâ€, Chemosphere Vol. 31 ,(1995) , pp 4158–4170.
[82] W.Z. Tang, H. An, “Photocatalytic degradation kinetics and mechanism of acid blue 40 by TiOâ‚‚/UV in aqueous solutionâ€, Chemosphere, Vol. 31, (1995), pp 4171–4183.
[83] I.A. Alaton, I.A. Balcioglu, “Photochemical and heterogeneous photocatalytic degradation ofwaste vinylsulphone dyes: a case study with hydrolyzed Reactive Black 5â€, J. Photochem. Photobiol. A: Chem. Vol. 141, (2001), pp 247–254.
[84] D. Grosse, N. Lewis, “Handbook on Advanced Photochemical Oxidation Processesâ€, Center for Environmental Research Information, National Risk Management Research Laboratory, Office of Research and Development, US, EPA, Cincinati, USA, 1998.
[85] I. Poulios, I. Aetopoulou, “Photocatalytic degradation of the textile dye Reactive Orange 16 in the presence of TiOâ‚‚ suspensionsâ€, Environ. Technol. Vol. 20, (1999), pp 479 – 487.
[86] M.A. Fox, M.T. Dulay, “Heterogeneous photocatalysisâ€, Chem. Rev. Vol. 9, (1993), pp 341.
[87] D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.Richard A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. 88 Sherwood, A. Walsh, A. A. Sokol, “Band alignment of rutile and anatase TiOâ‚‚â€, Nature Materials, Vol. 12, (2013), pp 798–801.
[88] Fujishima A, Rao TN, Tryk DA, “Titanium dioxide photocatalysisâ€, J Photochem Photobiol C, Vol. 1(1), (2000), pp 1–21.
[89] Rajeshwar K, Osugi ME, Chanmanee W, Chenthamarakshan CR, Zanoni M, Kajitvichyanukul P, Krishnan-Ayer R, “ Heterogeneous photocatalytic treatment of organic dyes in air and aqueous mediaâ€. J Photochem Photobiol C, Vol. 9(4), (2008), pp 171–192.
[90] Rehman S, Ullah R, Butt AM, Gohar ND, “Strategies of making TiOâ‚‚ and ZnO visible light activeâ€. J Hazard Mater 170(2–3), (2009), pp 560–569.
[91] K.A. Gross, J. Tikkanen, J. Keskinen, V. Pitkänen, M. Eerola, R. Siikamäki, M. Rajala, “Liquid Flame Spraying for glass coloring†Journal of Thermal Spray Technology , Vol. 8, (1999), pp 583–589.
[92] B. Ohtani, “Photocatalysis A to Z-What we know and what we do not know in a scientific senseâ€, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 11,( 2010), pp 157–178.
[93] Z. Zhang, J.T. Yates, “Band bending in semiconductors: Chemical and Physical consequences at surfaces and interfacesâ€, Chemical Reviews 112, ( 2012), pp 5520–5551.
[94] Sasha M. Klein, Joon Hwan Choi, David. J. Pine, Fred F. Lange, “Synthesis of rutile titania powders: Agglomeration, dissolution, and reprecipitation phenomenaâ€, J. Mater. Res., Vol. 18, No. 6, (2003).
[95] Xuelian Bai, Bin Xie, Nan Pan, Xiaoping Wang, Haiqian Wang, “Novel three-dimensional dandelion-like TiOâ‚‚ structure with high photocatalytic activityâ€, Journal of solid state chemistry, Vol.181, (2008), pp 450-456.
[96] Evyan Yang Chia Yan, Sarani Zakaria, Chin Hua Chia, “One-step synthesis of titanium oxide nanocrystal-rutile by hydrothermal methodâ€, AIP Conference Proceedings 1614, (2014), pp 122-128.
-
Downloads
-
How to Cite
Shamsudin, S., K. Ahmad, M., Nafarizal, N., F. Soon, C., A. Rahim, R., H. Mamat, M., B. Suriani, A., Shimomura, M., & Murakami, K. (2019). Photocatalyst Nanostructured Tioâ‚‚ Powder by Using Hydrothermal Method: a Review. International Journal of Engineering & Technology, 8(1.7), 198-205. https://doi.org/10.14419/ijet.v8i1.7.25977Received date: 2019-01-16
Accepted date: 2019-01-16
Published date: 2019-01-18