Implementation of Digital Image Processing for Rice Field Harvest Time and Area Size Estimation using Images Taken from Autonomous Aerial Harvest Surveillance

  • Authors

    • Inung Wijayanto
    • Wijayanto Nurjannah
    • Nurjannah Fathurrohim Nur
    2019-01-26
    https://doi.org/10.14419/ijet.v8i1.9.26402
  • Autonomous Aerial Harvest Surveillance, RGB Color Space, Backpropagation
  • Abstract

    Problem faced by Indonesian farmers is the low price of the unhulled rice which happened when several region has the same harvest time. Indonesian Ministry of Agriculture encourage the farmers to do crop diversification to keep the crop price high. In order to support this policy, we provide estimation data so that local departement under the Ministry of Agriculture can give advice to farmers in their area to choose the right crops to plant. By using an Autonomous Aerial Harvest Surveillance (AAHS), we take images of rice fields to estimate the harvest time. The AAHS also provide global positioning system data while flying through its waypoint mission. These data are sent directly to the ground station (GS). By analyzing the RGB color space, and classification using backpropagation neural network, we have the average accuracy for harvest time estimation on real time flight testing is 82,73%, while the average accuracy for area size estimation is 73,92 %. Based on the feedback we received from local agriculture department, the accuration result is enough to help them forecasting the harvest result in their area.

     

  • References

    1. [1] Abdullah, M. F., Wijayanto, I., & Rusdinar, A. (2016). Position Estimation and Fire Detection Based on Digital Video Color Space for Autonomous Quadcopter Using Odroid XU4. In The 2016 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC) (pp. 169–173).

      [2] Chaves, A. A., La Scalea, R. A., Colturato, A. B., Kawabata, C. L. O., Furtado, E. L., & Branco, K. (2015). Using UAVs and digital image processing to quantify areas of soil and vegetation. Journal of Physics: Conference Series, 633(1), 12112–12115. http://doi.org/10.1088/1742-6596/633/1/012112

      [3] Gusa, R. F. (2013). Pengolahan Citra Digital untuk Menghitung Luas Daerah Bekas Penambangan Timah. Jurnal Nasional Teknik Elektro, 2(2), 27–34.

      [4] Islam, R. (2015). An Image Processing Technique to Calculate Percentage of Disease Affected Pixels of Paddy Leaf, 123(12), 28–34.

      [5] Kusumanto, R. D., & Tompunu, A. N. (2011). Pengolahan Citra Digital Untuk Mendeteksi Obyek Menggunakan Pengolahan Warna Model Normalisasi RGB. Seminar Nasional Teknologi Informasi & Komunikasi Terapan 2011, 2011(Semantik), 1–7.

      [6] Liu, D., & Yu, J. (2009). Otsu method and K-means. Proceedings - 2009 9th International Conference on Hybrid Intelligent Systems, HIS 2009, 1(2), 344–349. http://doi.org/10.1109/HIS.2009.74

      [7] Makin, J. G. (2006). Backpropagation, 1–8.

      [8] Massana, R., Gasol, J. M., Bjørnsen, P. K., Black-Burn, N., Hagström, Å., Hietanen, S., … Pedrós-Alió, C. (1997). Measurement of bacterial size via image analysis of epifluorescence preparations: description of an inexpensive system and solutions to some of the most common problems. Scientia Marina, 61(3), 397–407. http://doi.org/10.1017/CBO9781107415324.004

      [9] Patil, S., & Bodhe, S. (2011). Betel leaf area measurement using image processing. International Journal on Computer Science …, 3(7), 2656–2660. Retrieved from http://www.enggjournals.com/ijcse/doc/IJCSE11-03-07-087.pdf

      [10] Resmi, S. (2013). Implementasi Metode Image Substracting Untuk Mendeteksi Gerakan Objek Dengan Warna Pada File Video. Fakultas Teknologi Informasi, Universitas Stikubank, Semarang.

      [11] Rojas, R. (1996). Neural Networks : A Systematic Introduction. Neural Networks. Springer.

      [12] S. Noda, K. U. (1994). Fire Detection in Tunnels Using an Image Processing Method. In Vehicle Navigation & Information Systems conference proceeding (pp. 57–62).

  • Downloads

  • How to Cite

    Wijayanto, I., Nurjannah, W., & Fathurrohim Nur, N. (2019). Implementation of Digital Image Processing for Rice Field Harvest Time and Area Size Estimation using Images Taken from Autonomous Aerial Harvest Surveillance. International Journal of Engineering & Technology, 8(1.9), 215-219. https://doi.org/10.14419/ijet.v8i1.9.26402

    Received date: 2019-01-22

    Accepted date: 2019-01-22

    Published date: 2019-01-26