Planar and Non Planar Construction of ï§- Uniquely Colorable Graph

  • Authors

    • A. Elakkiya
    • M. Yamuna
    2018-10-02
    https://doi.org/10.14419/ijet.v7i4.10.26656
  • Complement, Dual, Non Planar, Planar, Uniquely colorablegraphs.
  • Abstract

    A uniquely colorable graph G whose chromatic partition contains atleast one g - set is termed as a g - uniquely colorable graph. In this paper, we provide necessary and sufficient condition for and G* to be g - uniquely colorable whenever G  g- uniquely colorable and also provide constructive characterization to show that whenever G is g- uniquely colorable such that |P | ³ 2, G can be both planarand non planar.

     

  • References

    1. [1] Bing Zhou, “On the maximum number of dominating classes in graph coloringâ€, Open Journal of Discrete Mathematics,Vol 6,(2016).pp.70 – 73.

      [2] M. Yamuna, A. Elakkiya, “g - Uniquely colorable graphsâ€, IOPConf. Series: Materials Science and Engineering , Vol.263 ,( 2017).

      [3] M. Yamuna, A. Elakkiya,†Planar graph characterization of g- Uniquely colorable graphsâ€, IOP Conf. Series: Materials Sci-ence and Engineering ,Vol263, ( 2017 ).

      [4] Yamuna, M., Elakkiya, A., “Non domination subdivision stable graphsâ€, IOP Conf. Series: Materials Science and Engineering. Vol 263, ( 2017 ).

      [5] Yamuna, M., Elakkiya, A, “Planar graph characterization of NDSS graphsâ€, IOP Conf. Series: Materials Science and Engineering ,Vol 263 ,( 2017 ).

      [6] Harary, F,Graph Theory, Addison Wesley, Narosa Publishing House, (2001).

      [7] Haynes, T.W., Hedetniemi, S. T & Slater, P. J. Fundamentals of domination in graphs, New York, Marcel Dekker, ( 1998 ).

  • Downloads

  • How to Cite

    Elakkiya, A., & Yamuna, M. (2018). Planar and Non Planar Construction of - Uniquely Colorable Graph. International Journal of Engineering & Technology, 7(4.10), 998-1000. https://doi.org/10.14419/ijet.v7i4.10.26656

    Received date: 2019-01-29

    Accepted date: 2019-01-29

    Published date: 2018-10-02