Entropy Generation on MHD Flow and Heat Transfer of Non-Newtonian Fluid Flow Over a Non-Linear Radially Stretching Sheet
-
2018-10-02 https://doi.org/10.14419/ijet.v7i4.10.26776 -
Axisymmetric flow, Heat transfer, Magnetic effect, Non-Newtonian fluid, Entropy generation. -
Abstract
An investigation is made for analyzing the behavior of MHD flow phenomena of a non-Newtonian fluid over a non-linear radially stretching sheet by using numerical technique. Magnetic field is considered in normal direction to the stretching sheet. With use of similarity transformations, the pdes are transformed into odes. The solution of theses odes are performed by using fourth order Runge - Kutta method along with shooting technique. The significance of different physical parameters characterizes the flow phenomena are analyzed with the use of graphs. The Jeffrey parameter  and magnetic parameter  has significant effect on velocity and temperature distribution over a non-linear stretching sheet. It is noticed that, the higher magnetic parameter results the increase in entropy generation number where the opposite nature is noticed in the case of Bejan number.
Â
Â
-
References
[1] Crane, L.J., “Flow past a stretching plateâ€. Z. Angew. Math. Phys., Vol. 21 (1970), pp. 645–655. https://doi.org/10.1007/BF01587695.
[2] Wang, C.Y., “The three-dimensional flow due to a stretching flat surfaceâ€. AIP Physics of Fluids, Vol. 27(8) (1984), pp. 1915–1917. https://doi.org/10.1063/1.864868.
[3] Ariel, P. D., “Axisymmetric flow due to a stretching sheet with partial slipâ€. Computers and Mathematics with Applications, Vol. 54 (7-8) (2007), pp. 1169-1183. https://doi.org/10.1016/j.camwa.2006.12.063.
[4] Alinejad, J. & Samarbakhsh, S. “Viscous flow over nonlinearly stretching sheet with effects of viscous dissipationâ€. Journal of Applied Mathematics, Vol.10, Article ID: 587834 (2012). http://dx.doi.org/10.1155/2012/587834.
[5] Nadeem, S. & Hussain, A., “MHD flow of a viscous fluid on a nonlinear porous shrinking sheet with Homotopy analysis methodâ€. .Applied. Mathematics and Mechanics, Vol. 30 (2009), pp.1569-1578. https://doi.org/10.1007/s10483-009-1208-6.
[6] Qasim, M. “Heat and mass transfer in a Jeffrey fluid over a stretching sheet with heat source/sinkâ€. Alex. Eng. Journal, Vol. 52(4) (2013), pp. 571-575. https://doi.org/10.1016/j.aej.2013.08.004.
[7] Hassanien, I.A., Abdullah, A. & Gorla, R.S.R.,†Flow and heat transfer in a Power-Law fluid over a nonisothermal stretching sheetâ€. Mathematical Computer Modeling. Vol. 28(9) (1998), pp.105-116. https://doi.org/10.1016/S0895-7177(98)00148-4.
[8] Salleh, M. Z., Nazar, R. and Pop, I. “Boundary layer flow and heat transfer over a stretching sheet with Newtonian heatingâ€. Journal of the Taiwan Institute of Chemical Engineers, Vol. 41(6) (2010), pp. 651-655. https://doi.org/10.1016/j.jtice.2010.01.013.
[9] Khan, W.A. and Pop, I. “Boundary layer flow of a nanofluid past a stretching sheetâ€. International Journal of Heat and Mass Transfer, Vol. 53 (11-12) (2010), pp.2477–2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032.
[10] Makinde, O.D. & Azizb, A., “Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary conditionâ€. Intr. Journal of Thermal Sciences, Vol. 50(7) (2011), pp.1326-1332. https://doi.org/10.1016/j.ijthermalsci.2011. 02. 019.
[11] Rana, P. & Bhargava, R. “Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: A numerical studyâ€. Communications in Nonlinear Science and Numerical Simulation, Vol. 17(1) (2012), pp.212–226. https://doi.org/10.1016/j.cnsns.2011.05.009.
[12] Ahmad, K., Hanouf, Z. and Ishak,A.,†Mixed convection Jeffrey fluid flow over an exponentially stretching sheet with magneto hydrodynamic effect.â€. AIP Advances,Vol.6(3)(2016), pp.035024(1-7) https://doi.org/10.1063/1.4945401.
[13] Ahmed, J., Shahzad, A., Khan, M. and Ali, R. “A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheetâ€. AIP Advances, Vol. 5(11) (2015), pp.117117 (1-11). https://doi.org/10.1063/1.4935571.
[14] Liao, S. J., “On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheetâ€. Journal of Fluid Mechanics, Vol. 488 (2003) pp. 189-212. https://doi.org/10.1017/S0022112003004865
[15] Ishak, A., “Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effectâ€. Meccanica, Vol. 45(3) (2010) pp. 367-373. https://doi.org/10.1007/s11012-009-9257-4.
[16] Abel, M. S. & Mahesha, N., “Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiationâ€. Applied Mathematical Modeling, Vol. 32(10) (2008), pp. 1965-1983. https://doi.org/10.1016/j.apm.2007.06.038.
[17] Rashidi,M. M., Rostami, B., Freidoonimehr, N. and Abbasbandy, S. “Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effectsâ€. Ain Shams Engineering Journal, Vol. 5(3), (2014), pp.901-912. https://doi.org/10.1016/j.asej.2014.02.007.
[18] Pramanik, S. “Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiationâ€. Ain Shams Engineering Journal, Vol. 5(1) (2014), pp. 205-212. https://doi.org/10.1016/j.asej.2013.05.003.
[19] Shahzad, A., Ali, R. and Khan, M. “On exact solution for asymmetric flow and heat transfer over a nonlinear radially stretching sheetâ€. Chin. Phys. Lett, Vol. 29 (2012), pp. 084705 (1-4). http://doi:10.1088/0246-307x/29/8/084705.
[20] Shahzad, A., Ahmed, J. and Khan, M. (2016). “On heat transfer analysis of axisymmetric flow of viscous fluid over a nonlinear radially stretching sheetâ€. Alexandria Engineering Journal, Vol.55 (3) (2016), pp. 2423-2429. https://doi.org/10.1016/j.aej.2016.04.013.
-
Downloads
-
How to Cite
Sreenadh, S., Ramesh Babu, V., Gopi Krishna, G., R.Mishra, S., & N.S.Srinivas, A. (2018). Entropy Generation on MHD Flow and Heat Transfer of Non-Newtonian Fluid Flow Over a Non-Linear Radially Stretching Sheet. International Journal of Engineering & Technology, 7(4.10), 863-868. https://doi.org/10.14419/ijet.v7i4.10.26776Received date: 2019-01-30
Accepted date: 2019-01-30
Published date: 2018-10-02