A Study on p-Cyclic Orbital Geraghty type Contractions

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    Consider a metric space  and the non empty sub sets, of X. A map called p-cyclic orbital Geraghty type of contraction is introduced.  Convergence of a unique fixed point and a best proximity point for this map is obtained in a uniformly convex Banach space setting.  Also, this best proximity point is the unique periodic point of such a map.



  • Keywords

    p-cyclic maps, Orbital contraction, Geraghty type contraction.

  • References

      [1] M.A. Geraghty, On contractive maps, Proc. Amer. Math. Soc 40 (1973) 604-608.

      [2] W.A. Kirk, P.S.Srinivasan and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed point theory, 4:1 (2003), 79-89.

      [3] A.Eldred, Existence and Convergence of Best proximity points, Ph.D Thesis, 2006, Indian Institute of Technology Madras, Chennai, India.

      [4] S. Karpagam, On fixed point theorems and best proximity point theorems, Ph.D Thesis 2009, The Ramanujan Institute for Advanced study in Mathematics, University of Madras, Chennai , Indai.

      [5] S. Karpagam and S. Agrawal, Best proximity point theorems for cyclic orbital Meir- Keeler contraction maps, Nonlinear Anal. 74 (2011) 1040-1046.

      [6] S. Karpagam and S. Agrawal, Best Proximity point for p-cyclic Meir- Keeler contractions, Fixed Point Theory Appl., Volume 29, Article ID 197308, 9 pages.

      [7] S. Karpgam and S. Agrawal, Existence of best proximity points for p- cyclic contractions, Fixed point Theory, 13 :99 - 105, 2012.

      [8] M. Petric, BZlatanov, Best proximity points and Fixed points for p- summing maps, Fixed point theory appl., 2012:2012:86

      [9] B. Zlatanov, Best Proximity points for p- Summing Cyclic Orbital Meir - Keeler Contractions, Nonlinear Anal. Model. Control 20 (4) 2015 528-544.

      [10] S. Karpagam and B. Zlztanov, Best proximity points of p-cyclic orbital Meir - Keeler contraction maps, Nonlinear Anal. Model. Control, 21 (6) :790 -806,2016.

      [11] S. Karpagam and B. Zlatanov, A note on p- summing orbital Meir - Keeler contraction maps, Int. J. Pure and Applied Math. Volume 107 no. 1, 2016, 225-243.




Article ID: 26780
DOI: 10.14419/ijet.v7i4.10.26780

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.