The Basis of the Deformation Method for Calculating of Elements from Wood under Cross-Section Bending

  • Authors

    • Svyatoslav Gomon
    • Svyatoslav Gomon
    • Petro Gomon
    • Serhiy Shkirenko
    2018-10-13
    https://doi.org/10.14419/ijet.v7i4.8.27223
  • solid and glued wood, deformation, stress-strain state.
  • Abstract

    The analysis of Ukrainian and foreign norms in calculating whole and laminated wood for different types of loads has been carried out. It is revealed that the calculation of wooden constructions is carried out by methods of boundary states in an elastic stage of work. The real stages of the stress-strain state of bending elements from wood and their constructions, taking into account the plastic work of the material, are considered. Developed and brought some preconditions for calculating given full diagram of the work of the wood taking into account the descending branch. The basis of the method of calculation of elements from solid and glued wood according to the deformation model, taking into account the growth of deformations in the calculated section, is presented.

     

     

  • References

    1. [1] Derevyannyye konstruktsii, SNiP ÃÃ-25-80, Stroyizdat, (1982), 65.

      [2] Design of timber structures. Eurocode 5.Part 1.1. General rules and rules for buildings (1995), 124.

      [3] Konstruktsiyi budynkiv i sporud, Derevʺyani konstruktsiyi, Osnovni polozhennya, DBN V.2.6-161:2010, Ukrarkhbudinform, (2011), 102.

      [4] Lennov V.G.(1958), Eksperimental'noye issledovaniye drevesiny na szhatiye i rastyazheniye vdol' volokon s uchetom dlitel'nogo deystviya zagruzki, Izvestiya vuzov. Stroitel'stvo i arkhitektura, 2,147-157.

      [5] Bykov V.V.(1967), Eksperimental'nyye issledovaniya prochnosti i deformativnosti drevesiny sibirskoy listvennitsy pri szhatii i rastyazhenii vdol' volokon s uchetom dlitel'nogo deystviya nagruzki, Izvestiya vuzov. Stroitel'stvo i arkhitektura, 8, 3-8.

      [6] Klymenko V.Z., Konstruktsiyi z dereva i plastmas, Vyshcha shkola ( 2000), 304.

      [7] Kochenov V.M. Nesushchaya sposobnost' elementov i soyedineniy derevyannykh konstruktsíy, Gosudarstvennoye izdatel'stvo (1953), 320.

      [8] Khukhryanskiy P.N. Prochnost' drevesiny, Goslesbumizdat (1955), 152.

      [9] Ashkenazi Ye.K., Boksberg I.P., Rubinshteyn G.M. Anizotropiya mekhanicheskikh svoystv drevesiny, Goslesbumizdat (1958), 140.

      [10] Ashkenazi Ye.K., Anizotropiya drevesiny i drevesnykh materialov, Lesnaya promyshlennost' (1978), 222.

      [11] Ashkenazi Ye.K., Ganov E.V. Anizotropiya konstruktsionnykh materialov, Mashinostroyeniye (1980), 247.

      [12] Geniyev G.A. O kriterii prochnosti drevesiny pri ploskom napryazhennom sostoyanii, Stroitel'naya mekhanika i raschet sooruzheniy (1981), 3, 15–20.

      [13] Klimenko V.Z. Metodicheskiye rekomendatsii po raschetu stroitel'nykh konstruktsiy iz kleyenoy drevesiny s uchetom slozhnogo napryazhennogo sostoyaniya materiala, KISI(1998), 50.

      [14] Orlovich R.B., Yezepov G.G., Naychuk A.YA. K otsenke nekotorykh kriteriyev prochnosti anizotropnykh tel pri ploskom napryazhennom sostoyanii, Stroitel'naya mekhanika i stroitel'nyye konstruktsii, Tekhnika, tekhnologiya, organiza-tsiya i ekonomika stroitel'stva, Vysheyshaya shkola (1984), 10, 124-127.

      [15] Fursov V.V., Abdurakhimov R.F., Cherednik D.L. Issledovaniye ob"yemnoy deformatsii drevesiny pri razlichnykh usloviyakh zagruzheniya, Naukoviy vísnik budívnitstva, KHGDUBA (1998), 2, 35–39.

      [16] Fursov V.V., Kovlev N.N., Vasil'yev A.YU. Slozhnoye naryazhennoye sostoyaniye pri smeshannom zagruzhenii ortogonal'nykh uzlov kleyenykh derevyannykh konstruktsiy, Sovremennyye metallicheskiye i derevyannyye konstruktsii, Mezhdunarodniy simpozium, Brest (2009), 330–335.

      [17] Schatz T. Zur bruchmechanischen Modellirung des Kurzzeit-Bruchverchaltens von Holz in Rissoffnungmodus 1. − Stuttgart, (1994), 156.

      [18] Naychuk A.YA., Orlovich R.B. Otsenka prochnosti drevesiny metodami mekhaniki razrusheniya, Sovershenstvovaniya stroitel'nikh konstruktsiy iz dereva i plastmass, SPbISI (1992), 43-48.

      [19] Naychuk A.YA. K voprosu o nesushchey sposobnosti derevyannykh kleyenykh balok so skvoznymi treshchinami, Promyshlennoye i grazhdanskoye stroitel'stvo (2004), 6, 38–40.

      [20] Jockwer R., Streiger R., Flangi A. State-of-the-art review of approaches for the design of timber beams with notches Journal of Structural Engineering (United States) (2014).

      DOI: 10.1061/(ASCE)ST.1943-541X.0000838

      [21] Drozdovskiy B.A., Fridman YA.B. Predisloviye k russkomu izdaniyu, Prikladnyye voprosy mekhaniki razrusheniya, Mir (1968), 552.

      [22] Griffith A. A. Trans. Phil. Roy. Soc., 221A, (1920), 163.

      [23] Tuturin S.V. Mekhanicheskaya prochnost' drevesiny, Dissertatsiya doktora tekhnicheskikh nauk, MGU (2005), 318.

      [24] Blanco C., Cabrero J.M., Martin-Meizoso A., K.G.Gebremedhin K.G. Design oriented failure model for wood accounting for different tensile and compressive behavior, Mechanics of Materials, 83 (2015), 103-109. https://doi.org/10.1016/j.mechmat.2015.01.001.

      [25] Gomon S., Pavluk A. Study on working peculiarities of glue laminated beams under conditions of slanting bending, Underwater technologies, 7 (2017), 42-48. https://doi.org/10.26884/j.uwtech.at.2017.07.042.

      [26] Gomon S. S., Polishchuk N. V. Sposob opredeleniya uprugoplasticheskikh kharakteristik tsel'noy i kleyenoy drevesiny na obraztsakh konstruktsionnykh razmerov pri szhatii, Science and Education a New Dimension, Natural and Technical Sciences, VI(21), Issue: 179 (2018), 17-21. https://doi.org/10.31174/SEND-NT2018-179VI21.

      [27] Gomon S.S. Peredumovy do zapobihannya prohre-suyuchomu ruynuvannyu konstruktsiy z derevyny pry diyi riznykh vydiv navantazhen, Resursoekonomni materialy, konstruktsiyi, budivli ta sporudy, 29, NUVHP (2015), 108-116.

      [28] Kopanitsa D.G., Loskutova D.V, Savchenko V.I., Plyaskin A.S. Opredeleniye koeffitsiyenta posteli dlya rascheta uzlovogo soyedineniya ele-mentov iz drevesiny na MZP, Vesnik TGASU, (2011), 2, 79-88.

      [29] Gomon S.S., Gomon S.S., Sasovskyy T.A. Diahramy mekhanichnoho stanu derevyny sosny za odnorazovoho korotkochasnoho deformuvannya do povnoyi vtraty mitsnosti materialu, Resursoekonomni materialy, konstruktsiyi, budivli ta sporudy, 23, NUVHP (2012), 161-166.

      [30] Kochkarev, D., & Galinska, T. (2017). Calculation methodology of reinforced concrete elements based on calculated resistance of reinforced concrete. Paper presented at the MATEC Web of Conferences, 116 https://doi.org/10.1051/matecconf/201711602020

      [31] Dmytrenko, T., Dmytrenko, A., & Derkach, T. (2018). The «Wooden structures» discipline educational and methodological complex development on the basis of informational intelligent system. International Journal of Engineering and Technology(UAE), 7(3), 92-96. https://doi.org/10.14419/ijet.v7i3.2.14381

      [32] Piskunov, V. G., Goryk, A. V., & Cherednikov, V. N. (2000). Modeling of transverse shears of piecewise homogeneous composite bars using an iterative process with account of tangential loads. 1. construction of a model.Mechanics of Composite Materials, 36(4), 287-296. doi:10.1007/BF02262807

      [33] Leshchenko M. V., Semko V. O. Thermal characteristics of the external walling made of cold-formed steel studs and polystyrene concrete. Magazine of Civil Engineering. № 8, (2015), pp. 44–55. https://doi.org/10.5862/MCE.60.6

      [34] Semko O., Yurin O., Avramenko Yu., Skliarenko S. Thermophysical aspects of cold roof spaces. MATEC Web of Conferences. Vol. 116, (2017), р. 02030. https://doi.org/10.1051/matecconf/201711602030

      [35] Yurin O., Galinska T. Study of heat shielding qualities of brick wall angle with additional insulation located on the outside fences. MATEC Web of Conferences. Vol. 116, (2017), р. 02039. https://doi.org/10.1051/matecconf/201711602039

  • Downloads

  • How to Cite

    Gomon, S., Gomon, S., Gomon, P., & Shkirenko, S. (2018). The Basis of the Deformation Method for Calculating of Elements from Wood under Cross-Section Bending. International Journal of Engineering & Technology, 7(4.8), 109-114. https://doi.org/10.14419/ijet.v7i4.8.27223

    Received date: 2019-02-11

    Accepted date: 2019-02-11

    Published date: 2018-10-13